Main Menu (Mobile)- Block
- Overview
-
Support Teams
- Overview
- Anatomy and Histology
- Cryo-Electron Microscopy
- Electron Microscopy
- Flow Cytometry
- Gene Targeting and Transgenics
- Immortalized Cell Line Culture
- Integrative Imaging
- Invertebrate Shared Resource
- Janelia Experimental Technology
- Mass Spectrometry
- Media Prep
- Molecular Genomics
- Primary & iPS Cell Culture
- Project Pipeline Support
- Project Technical Resources
- Quantitative Genomics
- Scientific Computing Software
- Scientific Computing Systems
- Viral Tools
- Vivarium
- Open Science
- You + Janelia
- About Us
Main Menu - Block
- Overview
- Anatomy and Histology
- Cryo-Electron Microscopy
- Electron Microscopy
- Flow Cytometry
- Gene Targeting and Transgenics
- Immortalized Cell Line Culture
- Integrative Imaging
- Invertebrate Shared Resource
- Janelia Experimental Technology
- Mass Spectrometry
- Media Prep
- Molecular Genomics
- Primary & iPS Cell Culture
- Project Pipeline Support
- Project Technical Resources
- Quantitative Genomics
- Scientific Computing Software
- Scientific Computing Systems
- Viral Tools
- Vivarium

Abstract
UNLABELLED: Temporal limits on perceptual decisions set strict boundaries on the possible underlying neural computations. How odor information is encoded in the olfactory system is still poorly understood. Here, we sought to define the limit on the speed of olfactory processing. To achieve this, we trained mice to discriminate different odor concentrations in a novel behavioral setup with precise odor delivery synchronized to the sniffing cycle. Mice reported their choice by moving a horizontal treadmill with their front limbs. We found that mice reported discriminations of 75% accuracy in 70-90 ms after odor inhalation. For a low concentration and nontrigeminal odorant, this time was 90-140 ms, showing that mice process odor information rapidly even in the absence of trigeminal stimulation. These response times establish, after accounting for odor transduction and motor delays, that olfactory processing can take tens of milliseconds. This study puts a strong limit on the underlying neural computations and suggests that the action potentials forming the neural basis for these decisions are fired in a few tens of milliseconds.
SIGNIFICANCE STATEMENT: Understanding how sensory information is processed requires different approaches that span multiple levels of investigation from genes to neurons to behavior. Limits on behavioral performance constrain the possible neural mechanisms responsible for specific computations. Using a novel behavioral paradigm, we established that mice can make decisions about odor intensity surprisingly fast. After accounting for sensory and motor delays, the limit on some olfactory neural computations can be as low as a few tens of milliseconds, which suggests that only the first action potentials across a population of neurons contribute to these computations.