Main Menu (Mobile)- Block
- Overview
-
Support Teams
- Overview
- Anatomy and Histology
- Cryo-Electron Microscopy
- Electron Microscopy
- Flow Cytometry
- Gene Targeting and Transgenics
- Immortalized Cell Line Culture
- Integrative Imaging
- Invertebrate Shared Resource
- Janelia Experimental Technology
- Mass Spectrometry
- Media Prep
- Molecular Genomics
- Primary & iPS Cell Culture
- Project Pipeline Support
- Project Technical Resources
- Quantitative Genomics
- Scientific Computing Software
- Scientific Computing Systems
- Viral Tools
- Vivarium
- Open Science
- You + Janelia
- About Us
Main Menu - Block
- Overview
- Anatomy and Histology
- Cryo-Electron Microscopy
- Electron Microscopy
- Flow Cytometry
- Gene Targeting and Transgenics
- Immortalized Cell Line Culture
- Integrative Imaging
- Invertebrate Shared Resource
- Janelia Experimental Technology
- Mass Spectrometry
- Media Prep
- Molecular Genomics
- Primary & iPS Cell Culture
- Project Pipeline Support
- Project Technical Resources
- Quantitative Genomics
- Scientific Computing Software
- Scientific Computing Systems
- Viral Tools
- Vivarium
Abstract
Transmembrane transporter proteins allow the passage of essentially all biologically important molecules across the lipid membranes of cells and organelles and are therefore of central importance to all forms of life. Current methods of transporter measurement, however, are lacking in several dimensions. Herein, a method is presented in which oscillating stimuli are presented to transporter-expressing cells, and activity is measured through imaging the corresponding oscillating responses of intracellular fluorescent sensors. This approach yields continuous temporal readouts of transporter activity and can therefore be used to measure time-dependent responses to drugs and other stimuli. Because of the periodic nature of the response, temporal Fourier transforms can be used to identify and quantify regions of interest in the xy plane and to overcome noise. This technique, called the Oscillating Stimulus Transporter Assay (OSTA), should greatly facilitate both functional characterization of transporters as well as high-throughput screening of drugs for transporters of particular pathophysiological interest.