Main Menu (Mobile)- Block
- Overview
-
Support Teams
- Overview
- Anatomy and Histology
- Cryo-Electron Microscopy
- Electron Microscopy
- Flow Cytometry
- Gene Targeting and Transgenics
- Immortalized Cell Line Culture
- Integrative Imaging
- Invertebrate Shared Resource
- Janelia Experimental Technology
- Mass Spectrometry
- Media Prep
- Molecular Genomics
- Primary & iPS Cell Culture
- Project Pipeline Support
- Project Technical Resources
- Quantitative Genomics
- Scientific Computing Software
- Scientific Computing Systems
- Viral Tools
- Vivarium
- Open Science
- You + Janelia
- About Us
Main Menu - Block
- Overview
- Anatomy and Histology
- Cryo-Electron Microscopy
- Electron Microscopy
- Flow Cytometry
- Gene Targeting and Transgenics
- Immortalized Cell Line Culture
- Integrative Imaging
- Invertebrate Shared Resource
- Janelia Experimental Technology
- Mass Spectrometry
- Media Prep
- Molecular Genomics
- Primary & iPS Cell Culture
- Project Pipeline Support
- Project Technical Resources
- Quantitative Genomics
- Scientific Computing Software
- Scientific Computing Systems
- Viral Tools
- Vivarium

Abstract
Fluorescence image co-localization analysis is widely utilized to suggest biomolecular interaction. However, there exists some confusion as to its correct implementation and interpretation. In reality, co-localization analysis consists of at least two distinct sets of methods, termed co-occurrence and correlation. Each approach has inherent and often contrasting strengths and weaknesses. Yet, neither one can be considered to always be preferable for any given application. Rather, each method is most appropriate for answering different types of biological question. This Review discusses the main factors affecting multicolor image co-occurrence and correlation analysis, while giving insight into the types of biological behavior that are better suited to one approach or the other. Further, the limits of pixel-based co-localization analysis are discussed in the context of increasingly popular super-resolution imaging techniques.