Main Menu (Mobile)- Block
- Overview
-
Support Teams
- Overview
- Anatomy and Histology
- Cryo-Electron Microscopy
- Electron Microscopy
- Flow Cytometry
- Gene Targeting and Transgenics
- Immortalized Cell Line Culture
- Integrative Imaging
- Invertebrate Shared Resource
- Janelia Experimental Technology
- Mass Spectrometry
- Media Prep
- Molecular Genomics
- Primary & iPS Cell Culture
- Project Pipeline Support
- Project Technical Resources
- Quantitative Genomics
- Scientific Computing Software
- Scientific Computing Systems
- Viral Tools
- Vivarium
- Open Science
- You + Janelia
- About Us
Main Menu - Block
- Overview
- Anatomy and Histology
- Cryo-Electron Microscopy
- Electron Microscopy
- Flow Cytometry
- Gene Targeting and Transgenics
- Immortalized Cell Line Culture
- Integrative Imaging
- Invertebrate Shared Resource
- Janelia Experimental Technology
- Mass Spectrometry
- Media Prep
- Molecular Genomics
- Primary & iPS Cell Culture
- Project Pipeline Support
- Project Technical Resources
- Quantitative Genomics
- Scientific Computing Software
- Scientific Computing Systems
- Viral Tools
- Vivarium
Abstract
A key feature of biological and artificial neural networks is the progressive refinement of their neural representations with experience. In neuroscience, this fact has inspired several recent studies in sensory and motor systems. However, less is known about how higher associational cortical areas, such as the hippocampus, modify representations throughout the learning of complex tasks. Here we focus on associative learning, a process that requires forming a connection between the representations of different variables for appropriate behavioral response. We trained rats in a spatial-context associative task and monitored hippocampal neural activity throughout the entire learning period, over several days. This allowed us to assess changes in the representations of context, movement direction and position, as well as their relationship to behavior. We identified a hierarchical representational structure in the encoding of these three task variables that was preserved throughout learning. Nevertheless, we also observed changes at the lower levels of the hierarchy where context was encoded. These changes were local in neural activity space and restricted to physical positions where context identification was necessary for correct decision making, supporting better context decoding and contextual code compression. Our results demonstrate that the hippocampal code not only accommodates hierarchical relationships between different variables but also enables efficient learning through minimal changes in neural activity space. Beyond the hippocampus, our work reveals a representation learning mechanism that might be implemented in other biological and artificial networks performing similar tasks.