Main Menu (Mobile)- Block
- Overview
-
Support Teams
- Overview
- Anatomy and Histology
- Cryo-Electron Microscopy
- Electron Microscopy
- Flow Cytometry
- Gene Targeting and Transgenics
- Immortalized Cell Line Culture
- Integrative Imaging
- Invertebrate Shared Resource
- Janelia Experimental Technology
- Mass Spectrometry
- Media Prep
- Molecular Genomics
- Primary & iPS Cell Culture
- Project Pipeline Support
- Project Technical Resources
- Quantitative Genomics
- Scientific Computing Software
- Scientific Computing Systems
- Viral Tools
- Vivarium
- Open Science
- You + Janelia
- About Us
Main Menu - Block
- Overview
- Anatomy and Histology
- Cryo-Electron Microscopy
- Electron Microscopy
- Flow Cytometry
- Gene Targeting and Transgenics
- Immortalized Cell Line Culture
- Integrative Imaging
- Invertebrate Shared Resource
- Janelia Experimental Technology
- Mass Spectrometry
- Media Prep
- Molecular Genomics
- Primary & iPS Cell Culture
- Project Pipeline Support
- Project Technical Resources
- Quantitative Genomics
- Scientific Computing Software
- Scientific Computing Systems
- Viral Tools
- Vivarium

Abstract
The ventromedial hypothalamus (VMH) projects to the periaqueductal gray (PAG) and anterior hypothalamic nucleus (AHN), mediating freezing and escape behaviors, respectively. We investigated VMH collateral (VMH-coll) neurons, which innervate both PAG and AHN, to elucidate their role in postsynaptic processing and defensive behavior plasticity. Using all-optical voltage imaging of 22,151 postsynaptic neurons ex vivo, we found that VMH-coll neurons engage inhibitory mechanisms at both synaptic ends and can induce synaptic circuit plasticity. In vivo optogenetic activation of the VMH-coll somas induced escape behaviors. We identified an Esr1-expressing VMH-coll subpopulation with postsynaptic connectome resembling that of wild-type collaterals on the PAG side. Activation of Esr1+VMH-coll neurons evoked freezing and unexpected flattening behavior, previously not linked to the VMH. Neuropeptides such as PACAP and dynorphin modulated both Esr1+VMH-coll connectomes. In vivo κ-opioid receptor antagonism impaired Esr1+VMH-coll-mediated defensive behaviors. These findings unveiled the central role of VMH-coll pathways in innate defensive behavior plasticity.