Main Menu (Mobile)- Block
- Overview
-
Support Teams
- Overview
- Anatomy and Histology
- Cryo-Electron Microscopy
- Electron Microscopy
- Flow Cytometry
- Gene Targeting and Transgenics
- Immortalized Cell Line Culture
- Integrative Imaging
- Invertebrate Shared Resource
- Janelia Experimental Technology
- Mass Spectrometry
- Media Prep
- Molecular Genomics
- Primary & iPS Cell Culture
- Project Pipeline Support
- Project Technical Resources
- Quantitative Genomics
- Scientific Computing Software
- Scientific Computing Systems
- Viral Tools
- Vivarium
- Open Science
- You + Janelia
- About Us
Main Menu - Block
- Overview
- Anatomy and Histology
- Cryo-Electron Microscopy
- Electron Microscopy
- Flow Cytometry
- Gene Targeting and Transgenics
- Immortalized Cell Line Culture
- Integrative Imaging
- Invertebrate Shared Resource
- Janelia Experimental Technology
- Mass Spectrometry
- Media Prep
- Molecular Genomics
- Primary & iPS Cell Culture
- Project Pipeline Support
- Project Technical Resources
- Quantitative Genomics
- Scientific Computing Software
- Scientific Computing Systems
- Viral Tools
- Vivarium

Abstract
Quantitative phase imaging (QPI) has proven to be a valuable tool for advanced biological and pharmacological research, providing phase information for the study of cell features and physiology in label-free conditions. The next step for QPI to become a gold standard is the quantitative assessment of the phase gradients over the different microscopy setups. Given the large variety of QPI systems, a systematic comparison is a challenging task, and requires a calibration target representative of the living samples. In this paper, we introduce a tailor-made 3D-printed phantom derived from phase images of eukaryotic cells. It comprises typical morphologies and optical thicknesses found in biological cultures and is characterized with digital holographic microscopy (reference measurements). The performance of three different full field QPI optical systems, in terms of optical path difference and dry mass accuracy, were evaluated. This phantom opens up other possibilities for the validation of reconstruction algorithms and post-processing routines, and paves the way for calibration targets designed ad hoc for specific biological questions.