Main Menu (Mobile)- Block
- Overview
 - 
                        Support Teams                           
- Overview
 - Anatomy and Histology
 - Cryo-Electron Microscopy
 - Electron Microscopy
 - Flow Cytometry
 - Gene Targeting and Transgenics
 - High Performance Computing
 - Immortalized Cell Line Culture
 - Integrative Imaging
 - Invertebrate Shared Resource
 - Janelia Experimental Technology
 - Mass Spectrometry
 - Media Prep
 - Molecular Genomics
 - Primary & iPS Cell Culture
 - Project Pipeline Support
 - Project Technical Resources
 - Quantitative Genomics
 - Scientific Computing
 - Viral Tools
 - Vivarium
 
 - Open Science
 - You + Janelia
 - About Us
 
Main Menu - Block
- Overview
 - Anatomy and Histology
 - Cryo-Electron Microscopy
 - Electron Microscopy
 - Flow Cytometry
 - Gene Targeting and Transgenics
 - High Performance Computing
 - Immortalized Cell Line Culture
 - Integrative Imaging
 - Invertebrate Shared Resource
 - Janelia Experimental Technology
 - Mass Spectrometry
 - Media Prep
 - Molecular Genomics
 - Primary & iPS Cell Culture
 - Project Pipeline Support
 - Project Technical Resources
 - Quantitative Genomics
 - Scientific Computing
 - Viral Tools
 - Vivarium
 
Abstract
Adenosine 5' triphosphate (ATP) is a universal intracellular energy source and an evolutionarily ancient, ubiquitous extracellular signal in diverse species. Here, we report the generation and characterization of single-wavelength genetically encoded fluorescent sensors (iATPSnFRs) for imaging extracellular and cytosolic ATP from insertion of circularly permuted superfolder GFP into the epsilon subunit of FF-ATPase from Bacillus PS3. On the cell surface and within the cytosol, iATPSnFR responds to relevant ATP concentrations (30 μM to 3 mM) with fast increases in fluorescence. iATPSnFRs can be genetically targeted to specific cell types and sub-cellular compartments, imaged with standard light microscopes, do not respond to other nucleotides and nucleosides, and when fused with a red fluorescent protein function as ratiometric indicators. After careful consideration of their modest pH sensitivity, iATPSnFRs represent promising reagents for imaging ATP in the extracellular space and within cells during a variety of settings, and for further application-specific refinements.



