Main Menu (Mobile)- Block
- Overview
-
Support Teams
- Overview
- Anatomy and Histology
- Cryo-Electron Microscopy
- Electron Microscopy
- Flow Cytometry
- Gene Targeting and Transgenics
- Immortalized Cell Line Culture
- Integrative Imaging
- Invertebrate Shared Resource
- Janelia Experimental Technology
- Mass Spectrometry
- Media Prep
- Molecular Genomics
- Primary & iPS Cell Culture
- Project Pipeline Support
- Project Technical Resources
- Quantitative Genomics
- Scientific Computing Software
- Scientific Computing Systems
- Viral Tools
- Vivarium
- Open Science
- You + Janelia
- About Us
Main Menu - Block
- Overview
- Anatomy and Histology
- Cryo-Electron Microscopy
- Electron Microscopy
- Flow Cytometry
- Gene Targeting and Transgenics
- Immortalized Cell Line Culture
- Integrative Imaging
- Invertebrate Shared Resource
- Janelia Experimental Technology
- Mass Spectrometry
- Media Prep
- Molecular Genomics
- Primary & iPS Cell Culture
- Project Pipeline Support
- Project Technical Resources
- Quantitative Genomics
- Scientific Computing Software
- Scientific Computing Systems
- Viral Tools
- Vivarium

Note: Research in this publication was not performed at Janelia.
Abstract
Most methods for structure-function analysis of the brain in medical images are usually based on voxel-wise statistical tests performed on registered magnetic resonance (MR) images across subjects. A major drawback of such methods is the inability to accurately locate regions that manifest nonlinear associations with clinical variables. In this paper, we propose Bayesian morphological analysis methods, based on a Bayesian-network representation, for the analysis of MR brain images. First, we describe how Bayesian networks (BNs) can represent probabilistic associations among voxels and clinical (function) variables. Second, we present a model-selection framework, which generates a BN that captures structure-function relationships from MR brain images and function variables. We demonstrate our methods in the context of determining associations between regional brain atrophy (as demonstrated on MR images of the brain), and functional deficits. We employ two data sets for this evaluation: the first contains MR images of 11 subjects, where associations between regional atrophy and a functional deficit are almost linear; the second data set contains MR images of the ventricles of 84 subjects, where the structure-function association is nonlinear. Our methods successfully identify voxel-wise morphological changes that are associated with functional deficits in both data sets, whereas standard statistical analysis (i.e., t-test and paired t-test) fails in the nonlinear-association case.