Main Menu (Mobile)- Block
- Overview
-
Support Teams
- Overview
- Anatomy and Histology
- Cryo-Electron Microscopy
- Electron Microscopy
- Flow Cytometry
- Gene Targeting and Transgenics
- Immortalized Cell Line Culture
- Integrative Imaging
- Invertebrate Shared Resource
- Janelia Experimental Technology
- Mass Spectrometry
- Media Prep
- Molecular Genomics
- Primary & iPS Cell Culture
- Project Pipeline Support
- Project Technical Resources
- Quantitative Genomics
- Scientific Computing Software
- Scientific Computing Systems
- Viral Tools
- Vivarium
- Open Science
- You + Janelia
- About Us
Main Menu - Block
- Overview
- Anatomy and Histology
- Cryo-Electron Microscopy
- Electron Microscopy
- Flow Cytometry
- Gene Targeting and Transgenics
- Immortalized Cell Line Culture
- Integrative Imaging
- Invertebrate Shared Resource
- Janelia Experimental Technology
- Mass Spectrometry
- Media Prep
- Molecular Genomics
- Primary & iPS Cell Culture
- Project Pipeline Support
- Project Technical Resources
- Quantitative Genomics
- Scientific Computing Software
- Scientific Computing Systems
- Viral Tools
- Vivarium

Note: Research in this publication was not performed at Janelia.
Abstract
Recent studies have shown that machine learning can improve the accuracy of detecting object boundaries in images. In the standard approach, a boundary detector is trained by minimizing its pixel-level disagreement with human boundary tracings. This naive metric is problematic because it is overly sensitive to boundary locations. This problem is solved by metrics provided with the Berkeley Segmentation Dataset, but these can be insensitive to topological differences, such as gaps in boundaries. Furthermore, the Berkeley metrics have not been useful as cost functions for supervised learning. Using concepts from digital topology, we propose a new metric called the warping error that tolerates disagreements over boundary location, penalizes topological disagreements, and can be used directly as a cost function for learning boundary detection, in a method that we call Boundary Learning by Optimization with Topological Constraints (BLOTC). We trained boundary detectors on electron microscopic images of neurons, using both BLOTC and standard training. BLOTC produced substantially better performance on a 1.2 million pixel test set, as measured by both the warping error and the Rand index evaluated on segmentations generated from the boundary labelings. We also find our approach yields significantly better segmentation performance than either gPb-OWT-UCM or multiscale normalized cut, as well as Boosted Edge Learning trained directly on our data.