Main Menu (Mobile)- Block
- Overview
-
Support Teams
- Overview
- Anatomy and Histology
- Cryo-Electron Microscopy
- Electron Microscopy
- Flow Cytometry
- Gene Targeting and Transgenics
- High Performance Computing
- Immortalized Cell Line Culture
- Integrative Imaging
- Invertebrate Shared Resource
- Janelia Experimental Technology
- Mass Spectrometry
- Media Prep
- Molecular Genomics
- Primary & iPS Cell Culture
- Project Pipeline Support
- Project Technical Resources
- Quantitative Genomics
- Scientific Computing
- Viral Tools
- Vivarium
- Open Science
- You + Janelia
- About Us
Main Menu - Block
- Overview
- Anatomy and Histology
- Cryo-Electron Microscopy
- Electron Microscopy
- Flow Cytometry
- Gene Targeting and Transgenics
- High Performance Computing
- Immortalized Cell Line Culture
- Integrative Imaging
- Invertebrate Shared Resource
- Janelia Experimental Technology
- Mass Spectrometry
- Media Prep
- Molecular Genomics
- Primary & iPS Cell Culture
- Project Pipeline Support
- Project Technical Resources
- Quantitative Genomics
- Scientific Computing
- Viral Tools
- Vivarium
Abstract
Movement-related activity has been detected across much of the brain, including sensory and motor regions. However, much remains unknown regarding the distribution of movement-related activity across brain regions, and how this activity relates to neural computation. Here we analyzed movement-related activity in brain-wide recordings of more than 50,000 neurons in mice performing a decision-making task. We used multiple machine learning methods to predict neural activity from videography and found that movement-related signals differed across areas, with stronger movement signals close to the motor periphery and in motor-associated subregions. Delineating activity that predicts or follows movement revealed fine-scale structure of sensory and motor encoding across and within brain areas. Through single-trial video-based predictions of behavior, we identified activity modulation by uninstructed movements and their impact on choice-related activity analysis. Our work provides a map of movement encoding across the brain and approaches for linking neural activity, uninstructed movements and decision-making.
PMID: 41254282 [PubMed - indexed for MEDLINE]
bioRxiv PrePrint https://doi.org/10.1101/2023.06.08.544257



