Main Menu (Mobile)- Block
- Overview
-
Support Teams
- Overview
- Anatomy and Histology
- Cryo-Electron Microscopy
- Electron Microscopy
- Flow Cytometry
- Gene Targeting and Transgenics
- Immortalized Cell Line Culture
- Integrative Imaging
- Invertebrate Shared Resource
- Janelia Experimental Technology
- Mass Spectrometry
- Media Prep
- Molecular Genomics
- Primary & iPS Cell Culture
- Project Pipeline Support
- Project Technical Resources
- Quantitative Genomics
- Scientific Computing Software
- Scientific Computing Systems
- Viral Tools
- Vivarium
- Open Science
- You + Janelia
- About Us
Main Menu - Block
- Overview
- Anatomy and Histology
- Cryo-Electron Microscopy
- Electron Microscopy
- Flow Cytometry
- Gene Targeting and Transgenics
- Immortalized Cell Line Culture
- Integrative Imaging
- Invertebrate Shared Resource
- Janelia Experimental Technology
- Mass Spectrometry
- Media Prep
- Molecular Genomics
- Primary & iPS Cell Culture
- Project Pipeline Support
- Project Technical Resources
- Quantitative Genomics
- Scientific Computing Software
- Scientific Computing Systems
- Viral Tools
- Vivarium

Note: Research in this publication was not performed at Janelia.
Abstract
The understanding of the molecular basis of the endocrine control of insect metamorphosis has been hampered by the profound differences in responses of the Lepidoptera and the Diptera to juvenile hormone (JH). In both Manduca and Drosophila, the broad (br) gene is expressed in the epidermis during the formation of the pupa, but not during adult differentiation. Misexpression of BR-Z1 during either a larval or an adult molt of Drosophila suppressed stage-specific cuticle genes and activated pupal cuticle genes, showing that br is a major specifier of the pupal stage. Treatment with a JH mimic at the onset of the adult molt causes br re-expression and the formation of a second pupal cuticle in Manduca, but only in the abdomen of Drosophila. Expression of the BR isoforms during adult development of Drosophila suppressed bristle and hair formation when induced early or redirected cuticle production toward the pupal program when induced late. Expression of BR-Z1 at both of these times mimicked the effect of JH application but, unlike JH, it caused production of a new pupal cuticle on the head and thorax as well as on the abdomen. Consequently, the ’status quo’ action of JH on the pupal-adult transformation is mediated by the JH-induced re-expression of BR.