Main Menu (Mobile)- Block
- Overview
-
Support Teams
- Overview
- Anatomy and Histology
- Cryo-Electron Microscopy
- Electron Microscopy
- Flow Cytometry
- Gene Targeting and Transgenics
- Immortalized Cell Line Culture
- Integrative Imaging
- Invertebrate Shared Resource
- Janelia Experimental Technology
- Mass Spectrometry
- Media Prep
- Molecular Genomics
- Primary & iPS Cell Culture
- Project Pipeline Support
- Project Technical Resources
- Quantitative Genomics
- Scientific Computing Software
- Scientific Computing Systems
- Viral Tools
- Vivarium
- Open Science
- You + Janelia
- About Us
Labs:
Project Teams:
Main Menu - Block
Labs:
Project Teams:
- Overview
- Anatomy and Histology
- Cryo-Electron Microscopy
- Electron Microscopy
- Flow Cytometry
- Gene Targeting and Transgenics
- Immortalized Cell Line Culture
- Integrative Imaging
- Invertebrate Shared Resource
- Janelia Experimental Technology
- Mass Spectrometry
- Media Prep
- Molecular Genomics
- Primary & iPS Cell Culture
- Project Pipeline Support
- Project Technical Resources
- Quantitative Genomics
- Scientific Computing Software
- Scientific Computing Systems
- Viral Tools
- Vivarium
janelia7_blocks-janelia7_biblio_header | block
Cell. 2001 Mar 9;104(5):661-73
A chemosensory gene family encoding candidate gustatory and olfactory receptors in Drosophila. Zuker Lab
Scott K, Brady R, Cravchik A, Morozov P, Rzhetsky A, Zuker C, Axel R
Note: Research in this publication was not performed at Janelia.
janelia7_blocks-janelia7_biblio_abstract | block
Abstract
A novel family of candidate gustatory receptors (GRs) was recently identified in searches of the Drosophila genome. We have performed in situ hybridization and transgene experiments that reveal expression of these genes in both gustatory and olfactory neurons in adult flies and larvae. This gene family is likely to encode both odorant and taste receptors. We have visualized the projections of chemosensory neurons in the larval brain and observe that neurons expressing different GRs project to discrete loci in the antennal lobe and subesophageal ganglion. These data provide insight into the diversity of chemosensory recognition and an initial view of the representation of gustatory information in the fly brain.
PMID: 11257221 [PubMed - indexed for MEDLINE]
node:body | entity_field
janelia7_blocks-janelia7_biblio_tools | block