Main Menu (Mobile)- Block
- Overview
-
Support Teams
- Overview
- Anatomy and Histology
- Cryo-Electron Microscopy
- Electron Microscopy
- Flow Cytometry
- Gene Targeting and Transgenics
- Immortalized Cell Line Culture
- Integrative Imaging
- Invertebrate Shared Resource
- Janelia Experimental Technology
- Mass Spectrometry
- Media Prep
- Molecular Genomics
- Primary & iPS Cell Culture
- Project Pipeline Support
- Project Technical Resources
- Quantitative Genomics
- Scientific Computing Software
- Scientific Computing Systems
- Viral Tools
- Vivarium
- Open Science
- You + Janelia
- About Us
Main Menu - Block
- Overview
- Anatomy and Histology
- Cryo-Electron Microscopy
- Electron Microscopy
- Flow Cytometry
- Gene Targeting and Transgenics
- Immortalized Cell Line Culture
- Integrative Imaging
- Invertebrate Shared Resource
- Janelia Experimental Technology
- Mass Spectrometry
- Media Prep
- Molecular Genomics
- Primary & iPS Cell Culture
- Project Pipeline Support
- Project Technical Resources
- Quantitative Genomics
- Scientific Computing Software
- Scientific Computing Systems
- Viral Tools
- Vivarium

Note: Research in this publication was not performed at Janelia.
Abstract
Determining the precise spatial extent of expression of genes across different tissues, along with knowledge of the biochemical function of the genes is critical for understanding the roles of various genes in the development of metazoan organisms. To address this problem, we have developed high-throughput methods for generating images of gene expression in Drosophila melanogaster imaginal discs and for the automated analysis of these images. Our method automatically learns tissue shapes from a small number of manually segmented training examples and automatically aligns, extracts and scores new images, which are analyzed to generate gene expression maps for each gene. We have developed a reverse lookup procedure that enables us to identify genes that have spatial expression patterns most similar to a given gene of interest. Our methods enable us to cluster both the genes and the pixels that of the maps, thereby identifying sets of genes that have similar patterns, and regions of the tissues of interest that have similar gene expression profiles across a large number of genes.