Main Menu (Mobile)- Block
- Overview
-
Support Teams
- Overview
- Anatomy and Histology
- Cryo-Electron Microscopy
- Electron Microscopy
- Flow Cytometry
- Gene Targeting and Transgenics
- Immortalized Cell Line Culture
- Integrative Imaging
- Invertebrate Shared Resource
- Janelia Experimental Technology
- Mass Spectrometry
- Media Prep
- Molecular Genomics
- Primary & iPS Cell Culture
- Project Pipeline Support
- Project Technical Resources
- Quantitative Genomics
- Scientific Computing Software
- Scientific Computing Systems
- Viral Tools
- Vivarium
- Open Science
- You + Janelia
- About Us
Labs:
Project Teams:
Main Menu - Block
Labs:
Project Teams:
- Overview
- Anatomy and Histology
- Cryo-Electron Microscopy
- Electron Microscopy
- Flow Cytometry
- Gene Targeting and Transgenics
- Immortalized Cell Line Culture
- Integrative Imaging
- Invertebrate Shared Resource
- Janelia Experimental Technology
- Mass Spectrometry
- Media Prep
- Molecular Genomics
- Primary & iPS Cell Culture
- Project Pipeline Support
- Project Technical Resources
- Quantitative Genomics
- Scientific Computing Software
- Scientific Computing Systems
- Viral Tools
- Vivarium
janelia7_blocks-janelia7_biblio_header | block
Optics Express. 2012;20(15):16532-43. doi: 10.1364/OE.20.016532
Complex wavefront corrections for deep tissue focusing using low coherence backscattered light. Cui Lab

Fiolka R, Si K, Cui M
janelia7_blocks-janelia7_biblio_abstract | block
Abstract
Aberrations and random scattering severely limit optical imaging in deep tissue. Adaptive optics can in principle drastically extend the penetration depth and improve the image quality. However, for random scattering media a large number of spatial modes need to be measured and controlled to restore a diffraction limited focus. Here, we present a parallel wavefront optimization method using backscattered light as a feedback. Spatial confinement of the feedback signal is realized with a confocal pinhole and coherence gating. We show in simulations and experiments that this approach enables focusing deep into tissue over up to six mean scattering path lengths. Experimentally the technique was tested on tissue phantoms and fixed brain slices.
node:body | entity_field
janelia7_blocks-janelia7_biblio_tools | block