Main Menu (Mobile)- Block
- Overview
-
Support Teams
- Overview
- Anatomy and Histology
- Cryo-Electron Microscopy
- Electron Microscopy
- Flow Cytometry
- Gene Targeting and Transgenics
- Immortalized Cell Line Culture
- Integrative Imaging
- Invertebrate Shared Resource
- Janelia Experimental Technology
- Mass Spectrometry
- Media Prep
- Molecular Genomics
- Primary & iPS Cell Culture
- Project Pipeline Support
- Project Technical Resources
- Quantitative Genomics
- Scientific Computing Software
- Scientific Computing Systems
- Viral Tools
- Vivarium
- Open Science
- You + Janelia
- About Us
Main Menu - Block
- Overview
- Anatomy and Histology
- Cryo-Electron Microscopy
- Electron Microscopy
- Flow Cytometry
- Gene Targeting and Transgenics
- Immortalized Cell Line Culture
- Integrative Imaging
- Invertebrate Shared Resource
- Janelia Experimental Technology
- Mass Spectrometry
- Media Prep
- Molecular Genomics
- Primary & iPS Cell Culture
- Project Pipeline Support
- Project Technical Resources
- Quantitative Genomics
- Scientific Computing Software
- Scientific Computing Systems
- Viral Tools
- Vivarium

Abstract
Motor control in mammals is traditionally viewed as a hierarchy of descending spinal-targeting pathways, with frontal cortex at the top 1–3. Many redundant muscle patterns can solve a given task, and this high dimensionality allows flexibility but poses a problem for efficient learning 4. Although a feasible solution invokes subcortical innate motor patterns, or primitives, to reduce the dimensionality of the control problem, how cortex learns to utilize such primitives remains an open question 5–7. To address this, we studied cortical and subcortical interactions as head-fixed mice learned contextual control of innate hindlimb extension behavior. Naïve mice performed reactive extensions to turn off a cold air stimulus within seconds and, using predictive cues, learned to avoid the stimulus altogether in tens of trials. Optogenetic inhibition of large areas of rostral cortex completely prevented avoidance behavior, but did not impair hindlimb extensions in reaction to the cold air stimulus. Remarkably, mice covertly learned to avoid the cold stimulus even without any prior experience of successful, cortically-mediated avoidance. These findings support a dynamic, heterarchical model in which the dominant locus of control can change, on the order of seconds, between cortical and subcortical brain areas. We propose that cortex can leverage periods when subcortex predominates as demonstrations, to learn parameterized control of innate behavioral primitives.