Main Menu (Mobile)- Block
- Overview
-
Support Teams
- Overview
- Anatomy and Histology
- Cryo-Electron Microscopy
- Electron Microscopy
- Flow Cytometry
- Gene Targeting and Transgenics
- Immortalized Cell Line Culture
- Integrative Imaging
- Invertebrate Shared Resource
- Janelia Experimental Technology
- Mass Spectrometry
- Media Prep
- Molecular Genomics
- Primary & iPS Cell Culture
- Project Pipeline Support
- Project Technical Resources
- Quantitative Genomics
- Scientific Computing Software
- Scientific Computing Systems
- Viral Tools
- Vivarium
- Open Science
- You + Janelia
- About Us
Main Menu - Block
- Overview
- Anatomy and Histology
- Cryo-Electron Microscopy
- Electron Microscopy
- Flow Cytometry
- Gene Targeting and Transgenics
- Immortalized Cell Line Culture
- Integrative Imaging
- Invertebrate Shared Resource
- Janelia Experimental Technology
- Mass Spectrometry
- Media Prep
- Molecular Genomics
- Primary & iPS Cell Culture
- Project Pipeline Support
- Project Technical Resources
- Quantitative Genomics
- Scientific Computing Software
- Scientific Computing Systems
- Viral Tools
- Vivarium
![](/sites/all/themes/janelia7/images/peopleHeadIcon.png)
Abstract
Dense-core vesicles (DCVs) are found in various types of cells, such as neurons, pancreatic β-cells, and chromaffin cells. These vesicles release transmitters, peptides, and hormones to regulate diverse functions, such as the stress response, immune response, behavior, and blood glucose levels. In traditional electron microscopy after chemical fixation, it is often reported that the dense cores occupy a portion of the vesicle towards the center and are surrounded by a clear halo. With electron microscopy following cryo-fixation in adrenal chromaffin cells, we report here that we did not observe halos, but dense cores filling up the entire vesicles suggesting that halos are likely the product of chemical fixation. More importantly, we observed that a fraction of DCVs contained 36-168 nm clear-core vesicles. A similar fraction of DCVs labeled with fluorescent false neurotransmitter FFN 511 or the dense-core matrix protein chromogranin A (CGA) were colocalized with fluorescently labeled or endogenous CD63 or ALIX, the membrane or lumen marker of ∼40-160 nm exosomes. These results suggest that DCVs contain exosomes. Since exosomes are generally thought to reside within multivesicular bodies in the cytosol and are released to the extracellular space to mediate diverse cell-to-cell communications, our findings suggest that dense-core vesicle fusion from many cell types is a new source for releasing exosomes to mediate intercellular communications. Given that dense-core vesicle fusion mediates many physiological functions, such as stress responses, immune responses, behavior regulation, and blood glucose regulation, exosome release from dense-core vesicle fusion might contribute to mediating these important functions.