Main Menu (Mobile)- Block
- Overview
-
Support Teams
- Overview
- Anatomy and Histology
- Cryo-Electron Microscopy
- Electron Microscopy
- Flow Cytometry
- Gene Targeting and Transgenics
- Immortalized Cell Line Culture
- Integrative Imaging
- Invertebrate Shared Resource
- Janelia Experimental Technology
- Mass Spectrometry
- Media Prep
- Molecular Genomics
- Primary & iPS Cell Culture
- Project Pipeline Support
- Project Technical Resources
- Quantitative Genomics
- Scientific Computing Software
- Scientific Computing Systems
- Viral Tools
- Vivarium
- Open Science
- You + Janelia
- About Us
Main Menu - Block
- Overview
- Anatomy and Histology
- Cryo-Electron Microscopy
- Electron Microscopy
- Flow Cytometry
- Gene Targeting and Transgenics
- Immortalized Cell Line Culture
- Integrative Imaging
- Invertebrate Shared Resource
- Janelia Experimental Technology
- Mass Spectrometry
- Media Prep
- Molecular Genomics
- Primary & iPS Cell Culture
- Project Pipeline Support
- Project Technical Resources
- Quantitative Genomics
- Scientific Computing Software
- Scientific Computing Systems
- Viral Tools
- Vivarium

Abstract
Acquiring both lineage and cell-type information during brain development could elucidate transcriptional programs underling neuronal diversification. This is now feasible with single-cell RNA-seq combined with CRISPR-based lineage tracing, which generates genetic barcodes with cumulative CRISPR edits. This technique has not yet been optimized to deliver high-resolution lineage reconstruction of protracted lineages. Drosophila neuronal lineages are an ideal model to consider, as multiple lineages have been morphologically mapped at single-cell resolution. Here we find the parameter ranges required to encode a representative neuronal lineage emanating from 100 stem cell divisions. We derive the optimum editing rate to be inversely proportional to lineage depth, enabling encoding to persist across lineage progression. Further, we experimentally determine the editing rates of a Cas9-deaminase in cycling neural stem cells, finding near ideal rates to map elongated Drosophila neuronal lineages. Moreover, we propose and evaluate strategies to separate recurring cell-types for lineage reconstruction. Finally, we present a simple method to combine multiple experiments, which permits dense reconstruction of protracted cell lineages despite suboptimum lineage encoding and sparse cell sampling.Competing Interest StatementThe authors have declared no competing interest.