Main Menu (Mobile)- Block
- Overview
-
Support Teams
- Overview
- Anatomy and Histology
- Cryo-Electron Microscopy
- Electron Microscopy
- Flow Cytometry
- Gene Targeting and Transgenics
- Immortalized Cell Line Culture
- Integrative Imaging
- Invertebrate Shared Resource
- Janelia Experimental Technology
- Mass Spectrometry
- Media Prep
- Molecular Genomics
- Primary & iPS Cell Culture
- Project Pipeline Support
- Project Technical Resources
- Quantitative Genomics
- Scientific Computing Software
- Scientific Computing Systems
- Viral Tools
- Vivarium
- Open Science
- You + Janelia
- About Us
Main Menu - Block
- Overview
- Anatomy and Histology
- Cryo-Electron Microscopy
- Electron Microscopy
- Flow Cytometry
- Gene Targeting and Transgenics
- Immortalized Cell Line Culture
- Integrative Imaging
- Invertebrate Shared Resource
- Janelia Experimental Technology
- Mass Spectrometry
- Media Prep
- Molecular Genomics
- Primary & iPS Cell Culture
- Project Pipeline Support
- Project Technical Resources
- Quantitative Genomics
- Scientific Computing Software
- Scientific Computing Systems
- Viral Tools
- Vivarium

Note: Research in this publication was not performed at Janelia.
Abstract
Epilepsy afflicts 1-2% of the world’s population and often goes untreated; nearly 70% of those with a form of epilepsy fail to receive proper treatment. Therefore, there is great demand for the design of novel, effective anticonvulsants to combat epilepsy in its numerous forms. Previously, alpha-hydroxy-alpha-phenylcaprolactam was found to have rather potent antiepileptic activity [anti-maximal electroshock (MES) ED(50)=63 mg/kg and anti-subcutaneous Metrazol (scMet) ED(50)=74 mg/kg] when administered intraperitoneally in mice. We focused our attention on the development of this compound through traditional medicinal chemistry techniques-including the Topliss approach, isosteric replacement, methylene insertion, and rigid analogue approach-in the hopes of determining the effect of caprolactam alpha-substitution and other structural modifications on anticonvulsant activity. A number of the desired targets were successfully synthesized and submitted to the Anticonvulsant Screening Program of the National Institute of Neurological Disorders and Stroke (NINDS). Phase I results were quite promising for at least three of the compounds: alpha-ethynyl-alpha-hydroxycaprolactam (10), alpha-benzyl-alpha-hydroxycaprolactam (11), and alpha-hydroxy-alpha-(phenylethynyl)caprolactam (13). Phase II results for 11 strongly suggested it as a new structural class for further development, as it exhibited an anti-MES T.I. in excess of 4.0. Further, the potent activity of 13 in all models also pointed to the substituted alkynylcaprolactams as a new anticonvulsant structural class.