Main Menu (Mobile)- Block
- Overview
-
Support Teams
- Overview
- Anatomy and Histology
- Cryo-Electron Microscopy
- Electron Microscopy
- Flow Cytometry
- Gene Targeting and Transgenics
- Immortalized Cell Line Culture
- Integrative Imaging
- Invertebrate Shared Resource
- Janelia Experimental Technology
- Mass Spectrometry
- Media Prep
- Molecular Genomics
- Primary & iPS Cell Culture
- Project Pipeline Support
- Project Technical Resources
- Quantitative Genomics
- Scientific Computing Software
- Scientific Computing Systems
- Viral Tools
- Vivarium
- Open Science
- You + Janelia
- About Us
Main Menu - Block
- Overview
- Anatomy and Histology
- Cryo-Electron Microscopy
- Electron Microscopy
- Flow Cytometry
- Gene Targeting and Transgenics
- Immortalized Cell Line Culture
- Integrative Imaging
- Invertebrate Shared Resource
- Janelia Experimental Technology
- Mass Spectrometry
- Media Prep
- Molecular Genomics
- Primary & iPS Cell Culture
- Project Pipeline Support
- Project Technical Resources
- Quantitative Genomics
- Scientific Computing Software
- Scientific Computing Systems
- Viral Tools
- Vivarium
Note: Research in this publication was not performed at Janelia.
Abstract
Population recordings of calcium activity are a major source of insight into neural function. Large dataset sizes often require automated methods, but automation can introduce errors that are difficult to detect. Here we show that automatic time course estimation can sometimes lead to significant misattribution errors, in which fluorescence is ascribed to the wrong cell. Misattribution arises when the shapes of overlapping cells are imperfectly defined, or when entire cells or processes are not identified, and misattribution can even be produced by methods specifically designed to handle overlap. To diagnose this problem, we develop a transient-by-transient metric and a visualization tool that allow users to quickly assess the degree of misattribution in large populations. To filter out misattribution, we also design a robust estimator that explicitly accounts for contaminating signals in a generative model. Our methods can be combined with essentially any cell finding technique, empowering users to diagnose and correct at large scale a problem that has the potential to significantly alter scientific conclusions.