Main Menu (Mobile)- Block
- Overview
 - 
                        Support Teams                           
- Overview
 - Anatomy and Histology
 - Cryo-Electron Microscopy
 - Electron Microscopy
 - Flow Cytometry
 - Gene Targeting and Transgenics
 - High Performance Computing
 - Immortalized Cell Line Culture
 - Integrative Imaging
 - Invertebrate Shared Resource
 - Janelia Experimental Technology
 - Mass Spectrometry
 - Media Prep
 - Molecular Genomics
 - Primary & iPS Cell Culture
 - Project Pipeline Support
 - Project Technical Resources
 - Quantitative Genomics
 - Scientific Computing
 - Viral Tools
 - Vivarium
 
 - Open Science
 - You + Janelia
 - About Us
 
Labs:
            Project Teams:
            Main Menu - Block
Labs:
            Project Teams:
            - Overview
 - Anatomy and Histology
 - Cryo-Electron Microscopy
 - Electron Microscopy
 - Flow Cytometry
 - Gene Targeting and Transgenics
 - High Performance Computing
 - Immortalized Cell Line Culture
 - Integrative Imaging
 - Invertebrate Shared Resource
 - Janelia Experimental Technology
 - Mass Spectrometry
 - Media Prep
 - Molecular Genomics
 - Primary & iPS Cell Culture
 - Project Pipeline Support
 - Project Technical Resources
 - Quantitative Genomics
 - Scientific Computing
 - Viral Tools
 - Vivarium
 
janelia7_blocks-janelia7_biblio_header | block
IUBMB Life. 2008 Jul;60(7):430-6. doi: 10.1002/iub.53
          Electron crystallography of aquaporins.              Gonen Lab            
                    
            Andrews S, Reichow SL, Gonen T          
        Note: Research in this publication was not performed at Janelia.
janelia7_blocks-janelia7_biblio_abstract | block
Abstract
Aquaporins are a family of ubiquitous membrane proteins that form a pore for the permeation of water. Both electron and X-ray crystallography played major roles in determining the atomic structures of a number of aquaporins. This review focuses on electron crystallography, and its contribution to the field of aquaporin biology. We briefly discuss electron crystallography and the two-dimensional crystallization process. We describe features of aquaporins common to both electron and X-ray crystallographic structures; as well as some structural insights unique to electron crystallography, including aquaporin junction formation and lipid-protein interactions.
PMID: 18465794 [PubMed - indexed for MEDLINE]
node:body | entity_field
janelia7_blocks-janelia7_biblio_authors | block
Janelia Authors
janelia7_blocks-janelia7_biblio_tools | block

