Main Menu (Mobile)- Block
- Overview
-
Support Teams
- Overview
- Anatomy and Histology
- Cryo-Electron Microscopy
- Electron Microscopy
- Flow Cytometry
- Gene Targeting and Transgenics
- Immortalized Cell Line Culture
- Integrative Imaging
- Invertebrate Shared Resource
- Janelia Experimental Technology
- Mass Spectrometry
- Media Prep
- Molecular Genomics
- Primary & iPS Cell Culture
- Project Pipeline Support
- Project Technical Resources
- Quantitative Genomics
- Scientific Computing Software
- Scientific Computing Systems
- Viral Tools
- Vivarium
- Open Science
- You + Janelia
- About Us
Labs:
Project Teams:
Main Menu - Block
Labs:
Project Teams:
- Overview
- Anatomy and Histology
- Cryo-Electron Microscopy
- Electron Microscopy
- Flow Cytometry
- Gene Targeting and Transgenics
- Immortalized Cell Line Culture
- Integrative Imaging
- Invertebrate Shared Resource
- Janelia Experimental Technology
- Mass Spectrometry
- Media Prep
- Molecular Genomics
- Primary & iPS Cell Culture
- Project Pipeline Support
- Project Technical Resources
- Quantitative Genomics
- Scientific Computing Software
- Scientific Computing Systems
- Viral Tools
- Vivarium
janelia7_blocks-janelia7_biblio_header | block
Current Opinion in Neurobiology. 2020 Sep 17;65:20-26. doi: 10.1016/j.conb.2020.08.009
Exploring internal state-coding across the rodent brain. Sternson Lab

Sternson SM
janelia7_blocks-janelia7_biblio_abstract | block
Abstract
The influence of peripheral physiology on goal-directed behavior involves specialized interoceptive sensory neurons that signal internal state to the brain. Here, we review recent progress to examine the impact of these specialized cell types on neurons and circuits throughout the central nervous system. These new approaches are important for understanding how the needs of the body interact and guide goal-directed behaviors.
PMID: 32950827 [PubMed - indexed for MEDLINE]
node:body | entity_field