Main Menu (Mobile)- Block
- Overview
-
Support Teams
- Overview
- Anatomy and Histology
- Cryo-Electron Microscopy
- Electron Microscopy
- Flow Cytometry
- Gene Targeting and Transgenics
- Immortalized Cell Line Culture
- Integrative Imaging
- Invertebrate Shared Resource
- Janelia Experimental Technology
- Mass Spectrometry
- Media Prep
- Molecular Genomics
- Primary & iPS Cell Culture
- Project Pipeline Support
- Project Technical Resources
- Quantitative Genomics
- Scientific Computing Software
- Scientific Computing Systems
- Viral Tools
- Vivarium
- Open Science
- You + Janelia
- About Us
Main Menu - Block
- Overview
- Anatomy and Histology
- Cryo-Electron Microscopy
- Electron Microscopy
- Flow Cytometry
- Gene Targeting and Transgenics
- Immortalized Cell Line Culture
- Integrative Imaging
- Invertebrate Shared Resource
- Janelia Experimental Technology
- Mass Spectrometry
- Media Prep
- Molecular Genomics
- Primary & iPS Cell Culture
- Project Pipeline Support
- Project Technical Resources
- Quantitative Genomics
- Scientific Computing Software
- Scientific Computing Systems
- Viral Tools
- Vivarium

Note: Research in this publication was not performed at Janelia.
Abstract
In humans, repeated alcohol consumption leads to the development of tolerance, manifested as a reduced physiological and behavioral response to a particular dose of alcohol. Here we show that adult Drosophila develop tolerance to the sedating and motor-impairing effects of ethanol with kinetics of acquisition and dissipation that mimic those seen in mammals. Importantly, this tolerance is not caused by changes in ethanol absorption or metabolism. Rather, the development of tolerance requires the functional and structural integrity of specific central brain regions. Mutants unable to synthesize the catecholamine octopamine are also impaired in their ability to develop tolerance. Taken together, these data show that Drosophila is a suitable model system in which to study the molecular and neuroanatomical bases of ethanol tolerance.