Main Menu (Mobile)- Block
- Overview
-
Support Teams
- Overview
- Anatomy and Histology
- Cryo-Electron Microscopy
- Electron Microscopy
- Flow Cytometry
- Gene Targeting and Transgenics
- Immortalized Cell Line Culture
- Integrative Imaging
- Invertebrate Shared Resource
- Janelia Experimental Technology
- Mass Spectrometry
- Media Prep
- Molecular Genomics
- Primary & iPS Cell Culture
- Project Pipeline Support
- Project Technical Resources
- Quantitative Genomics
- Scientific Computing Software
- Scientific Computing Systems
- Viral Tools
- Vivarium
- Open Science
- You + Janelia
- About Us
Main Menu - Block
- Overview
- Anatomy and Histology
- Cryo-Electron Microscopy
- Electron Microscopy
- Flow Cytometry
- Gene Targeting and Transgenics
- Immortalized Cell Line Culture
- Integrative Imaging
- Invertebrate Shared Resource
- Janelia Experimental Technology
- Mass Spectrometry
- Media Prep
- Molecular Genomics
- Primary & iPS Cell Culture
- Project Pipeline Support
- Project Technical Resources
- Quantitative Genomics
- Scientific Computing Software
- Scientific Computing Systems
- Viral Tools
- Vivarium

Abstract
Proper functioning of organelles such as the ER or the Golgi apparatus requires luminal accumulation of Ca(2+) at high concentrations. Here we describe a ratiometric low-affinity Ca(2+) sensor of the GFP-aequorin protein (GAP) family optimized for measurements in high-Ca(2+) concentration environments. Transgenic animals expressing the ER-targeted sensor allowed monitoring of Ca(2+) signals inside the organelle. The use of the sensor was demonstrated under three experimental paradigms: (1) ER Ca(2+) oscillations in cultured astrocytes, (2) ex vivo functional mapping of cholinergic receptors triggering ER Ca(2+) release in acute hippocampal slices from transgenic mice, and (3) in vivo sarcoplasmic reticulum Ca(2+) dynamics in the muscle of transgenic flies. Our results provide proof of the suitability of the new biosensors to monitor Ca(2+) dynamics inside intracellular organelles under physiological conditions and open an avenue to explore complex Ca(2+) signaling in animal models of health and disease.