Main Menu (Mobile)- Block
- Overview
-
Support Teams
- Overview
- Anatomy and Histology
- Cryo-Electron Microscopy
- Electron Microscopy
- Flow Cytometry
- Gene Targeting and Transgenics
- Immortalized Cell Line Culture
- Integrative Imaging
- Invertebrate Shared Resource
- Janelia Experimental Technology
- Mass Spectrometry
- Media Prep
- Molecular Genomics
- Primary & iPS Cell Culture
- Project Pipeline Support
- Project Technical Resources
- Quantitative Genomics
- Scientific Computing Software
- Scientific Computing Systems
- Viral Tools
- Vivarium
- Open Science
- You + Janelia
- About Us
Main Menu - Block
- Overview
- Anatomy and Histology
- Cryo-Electron Microscopy
- Electron Microscopy
- Flow Cytometry
- Gene Targeting and Transgenics
- Immortalized Cell Line Culture
- Integrative Imaging
- Invertebrate Shared Resource
- Janelia Experimental Technology
- Mass Spectrometry
- Media Prep
- Molecular Genomics
- Primary & iPS Cell Culture
- Project Pipeline Support
- Project Technical Resources
- Quantitative Genomics
- Scientific Computing Software
- Scientific Computing Systems
- Viral Tools
- Vivarium

Note: Research in this publication was not performed at Janelia.
Abstract
Both Plasmodium vivax and P. falciparum malaria can cause the delivery of low birthweight babies. In this report, we have quantitated haemozoin levels in placentas from women living on the Thai-Burmese border in a region of low transmission for both P. falciparum and P. vivax malaria from June 1995 to January 2000. P. falciparum malaria infections during pregnancy lead to the accumulation of haemozoin (malaria pigment) in the placenta, especially in infections near term and in primigravid pregnancies. Haemozoin concentration was not associated with adverse birth outcomes. Women with P. vivax infections during pregnancy do not have measurable levels of placental haemozoin suggesting that P. vivax-infected erythrocytes do not accumulate in the placenta as much as P. falciparum-infected ones.