Main Menu (Mobile)- Block
- Overview
-
Support Teams
- Overview
- Anatomy and Histology
- Cryo-Electron Microscopy
- Electron Microscopy
- Flow Cytometry
- Gene Targeting and Transgenics
- Immortalized Cell Line Culture
- Integrative Imaging
- Invertebrate Shared Resource
- Janelia Experimental Technology
- Mass Spectrometry
- Media Prep
- Molecular Genomics
- Primary & iPS Cell Culture
- Project Pipeline Support
- Project Technical Resources
- Quantitative Genomics
- Scientific Computing Software
- Scientific Computing Systems
- Viral Tools
- Vivarium
- Open Science
- You + Janelia
- About Us
Main Menu - Block
- Overview
- Anatomy and Histology
- Cryo-Electron Microscopy
- Electron Microscopy
- Flow Cytometry
- Gene Targeting and Transgenics
- Immortalized Cell Line Culture
- Integrative Imaging
- Invertebrate Shared Resource
- Janelia Experimental Technology
- Mass Spectrometry
- Media Prep
- Molecular Genomics
- Primary & iPS Cell Culture
- Project Pipeline Support
- Project Technical Resources
- Quantitative Genomics
- Scientific Computing Software
- Scientific Computing Systems
- Viral Tools
- Vivarium

Abstract
The anterodorsal projection neuron lineage of Drosophila melanogaster produces 40 neuronal types in a stereotypic order. Here we take advantage of this complete lineage sequence to examine the role of known temporal fating factors, including Chinmo and the Hb/Kr/Pdm/Cas transcriptional cascade, within this diverse central brain lineage. Kr mutation affects the temporal fate of the neuroblast (NB) itself, causing a single fate to be skipped, whereas Chinmo null only elicits fate transformation of NB progeny without altering cell counts. Notably, Chinmo operates in two separate windows to prevent fate transformation (into the subsequent Chinmo-indenpendent fate) within each window. By contrast, Hb/Pdm/Cas play no detectable role, indicating that Kr either acts outside of the cascade identified in the ventral nerve cord or that redundancy exists at the level of fating factors. Therefore, hierarchical fating mechanisms operate within the lineage to generate neuronal diversity in an unprecedented fashion.