Main Menu (Mobile)- Block
- Overview
-
Support Teams
- Overview
- Anatomy and Histology
- Cryo-Electron Microscopy
- Electron Microscopy
- Flow Cytometry
- Gene Targeting and Transgenics
- Immortalized Cell Line Culture
- Integrative Imaging
- Invertebrate Shared Resource
- Janelia Experimental Technology
- Mass Spectrometry
- Media Prep
- Molecular Genomics
- Primary & iPS Cell Culture
- Project Pipeline Support
- Project Technical Resources
- Quantitative Genomics
- Scientific Computing Software
- Scientific Computing Systems
- Viral Tools
- Vivarium
- Open Science
- You + Janelia
- About Us
Main Menu - Block
- Overview
- Anatomy and Histology
- Cryo-Electron Microscopy
- Electron Microscopy
- Flow Cytometry
- Gene Targeting and Transgenics
- Immortalized Cell Line Culture
- Integrative Imaging
- Invertebrate Shared Resource
- Janelia Experimental Technology
- Mass Spectrometry
- Media Prep
- Molecular Genomics
- Primary & iPS Cell Culture
- Project Pipeline Support
- Project Technical Resources
- Quantitative Genomics
- Scientific Computing Software
- Scientific Computing Systems
- Viral Tools
- Vivarium

Note: Research in this publication was not performed at Janelia.
Abstract
A model of acute carbon monoxide poisoning combined with spreading depression (SD) induced metabolic stress was used to examine the protective effects of cerebrolysin (CL) on the development of electrophysiological, behavioral and morphological signs of hypoxic damage. Capillary electrodes were implanted into the neocortex and hippocampus of anesthetized rats which were then exposed for 90 min to breathing of 0.8% to 0.5% CO, while 3 to 4 waves of cortical and hippocampal SD were elicited by microinjections of 5% KCl. Duration of SD-provoked depolarization of cerebral cortex and hippocampus was noted. Nine and 18 to 19 days later propagation of SD waves was recorded with the same electrodes and decrease of their amplitude was used as an index of brain damage which was significant in the hippocampus but not in the cortex. CL-treatment (2.5 ml/kg per day) started after CO administration and continued for 14 days significantly improved hippocampal recovery manifested by increased amplitude of SD waves. Behavioral tests performed 10 and 20 days after CO poisoning in the Morris water maze revealed better performance (escape latency 7 s) in the CL-treated than in untreated animals (14 s). Morphological analysis showed marked damage in the hippocampus consonant with electrophysiological and behavioral findings in the same animals. No apparent histological damage was found in rats exposed to CO inhalation alone without the additional SD-provoked depolarization. It is concluded that chronic CL-treatment enhances recovery of hippocampal tissue after hypoxic damage of intermediate severity.