Main Menu (Mobile)- Block
- Overview
-
Support Teams
- Overview
- Anatomy and Histology
- Cryo-Electron Microscopy
- Electron Microscopy
- Flow Cytometry
- Gene Targeting and Transgenics
- Immortalized Cell Line Culture
- Integrative Imaging
- Invertebrate Shared Resource
- Janelia Experimental Technology
- Mass Spectrometry
- Media Prep
- Molecular Genomics
- Primary & iPS Cell Culture
- Project Pipeline Support
- Project Technical Resources
- Quantitative Genomics
- Scientific Computing Software
- Scientific Computing Systems
- Viral Tools
- Vivarium
- Open Science
- You + Janelia
- About Us
Main Menu - Block
- Overview
- Anatomy and Histology
- Cryo-Electron Microscopy
- Electron Microscopy
- Flow Cytometry
- Gene Targeting and Transgenics
- Immortalized Cell Line Culture
- Integrative Imaging
- Invertebrate Shared Resource
- Janelia Experimental Technology
- Mass Spectrometry
- Media Prep
- Molecular Genomics
- Primary & iPS Cell Culture
- Project Pipeline Support
- Project Technical Resources
- Quantitative Genomics
- Scientific Computing Software
- Scientific Computing Systems
- Viral Tools
- Vivarium

Abstract
Voltage imaging is a promising technique for high-speed recording of neuronal population activity. However, tissue scattering severely limits its application in dense neuronal populations. Here, we adopted the principle of localization microscopy, a technique that enables super-resolution imaging of single-molecules, to resolve dense neuronal activities in vivo. Leveraging the sparse activation of neurons during action potentials (APs), we precisely localize the fluorescence change associated with each AP, creating a super-resolution image of neuronal activities. This approach, termed Activity Localization Imaging (ALI), identifies overlapping neurons and separates their activities with over 10-fold greater precision than what tissue scattering permits. Using ALI, we simultaneously recorded over a hundred densely-labeled CA1 neurons, creating a map of hippocampal theta oscillation at single-cell and single-cycle resolution.
bioRxiv Preprint https://doi.org/10.1101/2023.12.03.568403