Main Menu (Mobile)- Block
- Overview
-
Support Teams
- Overview
- Anatomy and Histology
- Cryo-Electron Microscopy
- Electron Microscopy
- Flow Cytometry
- Gene Targeting and Transgenics
- Immortalized Cell Line Culture
- Integrative Imaging
- Invertebrate Shared Resource
- Janelia Experimental Technology
- Mass Spectrometry
- Media Prep
- Molecular Genomics
- Primary & iPS Cell Culture
- Project Pipeline Support
- Project Technical Resources
- Quantitative Genomics
- Scientific Computing Software
- Scientific Computing Systems
- Viral Tools
- Vivarium
- Open Science
- You + Janelia
- About Us
Main Menu - Block
- Overview
- Anatomy and Histology
- Cryo-Electron Microscopy
- Electron Microscopy
- Flow Cytometry
- Gene Targeting and Transgenics
- Immortalized Cell Line Culture
- Integrative Imaging
- Invertebrate Shared Resource
- Janelia Experimental Technology
- Mass Spectrometry
- Media Prep
- Molecular Genomics
- Primary & iPS Cell Culture
- Project Pipeline Support
- Project Technical Resources
- Quantitative Genomics
- Scientific Computing Software
- Scientific Computing Systems
- Viral Tools
- Vivarium

Note: Research in this publication was not performed at Janelia.
Abstract
Polymorphisms in the inducible nitric oxide synthase gene (NOS2) promoter have been associated with clinical outcome from malaria. These include a CCTTT repeat (CCTTTn) 2.5 kilobases upstream from the NOS2 transcription start site, and two single nucleotide substitutions: G–>C at position -954 (G-954C), and C–>T at position -1173 (C-1173T). Although hypothesized to influence NO production in vivo, the functional relevance of (CCTTT)n and G-954C is uncertain because disease association studies have yielded inconsistent results. This study found no association between CCTTT repeat number and levels of plasma NO metabolites or peripheral blood mononuclear cell NOS activity in a cohort of asymptomatic malaria-exposed coastal Papua New Guineans 1-60 years old. This suggests that (CCTTT)n does not independently influence NOS2 transcription in vivo. Neither the G-954C nor the C-1173T polymorphisms were identified in this population, indicating the variability and complexity of selection for NOS2 promoter polymorphisms in different malaria-endemic populations.