Main Menu (Mobile)- Block
- Overview
-
Support Teams
- Overview
- Anatomy and Histology
- Cryo-Electron Microscopy
- Electron Microscopy
- Flow Cytometry
- Gene Targeting and Transgenics
- Immortalized Cell Line Culture
- Integrative Imaging
- Invertebrate Shared Resource
- Janelia Experimental Technology
- Mass Spectrometry
- Media Prep
- Molecular Genomics
- Primary & iPS Cell Culture
- Project Pipeline Support
- Project Technical Resources
- Quantitative Genomics
- Scientific Computing Software
- Scientific Computing Systems
- Viral Tools
- Vivarium
- Open Science
- You + Janelia
- About Us
Main Menu - Block
- Overview
- Anatomy and Histology
- Cryo-Electron Microscopy
- Electron Microscopy
- Flow Cytometry
- Gene Targeting and Transgenics
- Immortalized Cell Line Culture
- Integrative Imaging
- Invertebrate Shared Resource
- Janelia Experimental Technology
- Mass Spectrometry
- Media Prep
- Molecular Genomics
- Primary & iPS Cell Culture
- Project Pipeline Support
- Project Technical Resources
- Quantitative Genomics
- Scientific Computing Software
- Scientific Computing Systems
- Viral Tools
- Vivarium

Note: Research in this publication was not performed at Janelia.
Abstract
Environmental changes can elicit alterations in the form, behavior and/or physiology of all species, and this developmental response to environment is known as phenotypic plasticity. Despite its ubiquity, the molecular basis for phenotypic plasticity is not fully understood. The pea aphid, Acyrthosiphon pisum, serves as a model for an extreme form of phenotypic plasticity, known as polyphenism. Changes in photoperiod stimulate a switch in female aphid reproductive mode from asexual to sexual reproduction over the course of one generation without changes in genotype. This reproductive polyphenism results in female aphids with ovaries of one of two types: sexual ovaries (producing haploid oocytes via meiosis), or asexual ovaries (producing identical diploid aphid clones via parthenogenesis). To better understand how aphid ovaries could produce different outputs, we surveyed the transcriptomes of sexual and asexual ovaries using RNA-seq. Among genes that exhibited greater than two-fold differences in gene expression between sexual and asexual ovaries, we identified several aubergine paralogs, which encode for germline-specific members of the Argonaute small RNA-binding protein family. The A. pisum genome contains eight aubergine paralogs and at least two piwi paralogs. We are currently comparing the expression patterns of these aphid aubergine paralogs between asexual and sexual aphid ovaries. Aubergine proteins in other species are thought to help suppress the activity of transposable elements, which are found in high quantities throughout the A. pisum genome. Together, these experiments will help elucidate a potential relationship between aubergine paralogs and aphid reproductive plasticity.