Main Menu (Mobile)- Block
- Overview
-
Support Teams
- Overview
- Anatomy and Histology
- Cryo-Electron Microscopy
- Electron Microscopy
- Flow Cytometry
- Gene Targeting and Transgenics
- Immortalized Cell Line Culture
- Integrative Imaging
- Invertebrate Shared Resource
- Janelia Experimental Technology
- Mass Spectrometry
- Media Prep
- Molecular Genomics
- Primary & iPS Cell Culture
- Project Pipeline Support
- Project Technical Resources
- Quantitative Genomics
- Scientific Computing Software
- Scientific Computing Systems
- Viral Tools
- Vivarium
- Open Science
- You + Janelia
- About Us
Main Menu - Block
- Overview
- Anatomy and Histology
- Cryo-Electron Microscopy
- Electron Microscopy
- Flow Cytometry
- Gene Targeting and Transgenics
- Immortalized Cell Line Culture
- Integrative Imaging
- Invertebrate Shared Resource
- Janelia Experimental Technology
- Mass Spectrometry
- Media Prep
- Molecular Genomics
- Primary & iPS Cell Culture
- Project Pipeline Support
- Project Technical Resources
- Quantitative Genomics
- Scientific Computing Software
- Scientific Computing Systems
- Viral Tools
- Vivarium

Note: Research in this publication was not performed at Janelia.
Abstract
To compare spatial patterns of gene expression, one must analyze a large number of images as current methods are only able to measure a small number of genes at a time. Bringing images of corresponding tissues into alignment is a critical first step in making a meaningful comparative analysis of these spatial patterns. Significant image noise and variability in the shapes make it hard to pick a canonical shape model. In this paper, we address these problems by combining segmentation and unsupervised shape learning algorithms. We first segment images to acquire structures of interest, then jointly align the shapes of these acquired structures using an unsupervised nonparametric maximum likelihood algorithm along the lines of congealing, while simultaneously learning the underlying shape model and associated transformations. The learned transformations are applied to corresponding images to bring them into alignment in one step. We demonstrate the results for images of various classes of Drosophila imaginal discs and discuss the methodology used for a quantitative analysis of spatial gene expression patterns.