Main Menu (Mobile)- Block
- Overview
-
Support Teams
- Overview
- Anatomy and Histology
- Cryo-Electron Microscopy
- Electron Microscopy
- Flow Cytometry
- Gene Targeting and Transgenics
- Immortalized Cell Line Culture
- Integrative Imaging
- Invertebrate Shared Resource
- Janelia Experimental Technology
- Mass Spectrometry
- Media Prep
- Molecular Genomics
- Primary & iPS Cell Culture
- Project Pipeline Support
- Project Technical Resources
- Quantitative Genomics
- Scientific Computing Software
- Scientific Computing Systems
- Viral Tools
- Vivarium
- Open Science
- You + Janelia
- About Us
Main Menu - Block
- Overview
- Anatomy and Histology
- Cryo-Electron Microscopy
- Electron Microscopy
- Flow Cytometry
- Gene Targeting and Transgenics
- Immortalized Cell Line Culture
- Integrative Imaging
- Invertebrate Shared Resource
- Janelia Experimental Technology
- Mass Spectrometry
- Media Prep
- Molecular Genomics
- Primary & iPS Cell Culture
- Project Pipeline Support
- Project Technical Resources
- Quantitative Genomics
- Scientific Computing Software
- Scientific Computing Systems
- Viral Tools
- Vivarium

Abstract
Real-time neural signal processing is essential for brain-machine interfaces and closed-loop neuronal perturbations. However, most existing applications sacrifice cell-specific identity and temporal spiking information for speed. We developed a hybrid hardware-software system that utilizes a Field Programmable Gate Array (FPGA) chip to acquire and process data in parallel, enabling individual spikes from many simultaneously recorded neurons to be assigned single-neuron identities with 1-millisecond latency. The FPGA assigns labels, validated with ground-truth data, by comparing multichannel spike waveforms from tetrode or silicon probe recordings to a spike-sorted model generated offline in software. This platform allowed us to rapidly inactivate a region in vivo based on spikes from an upstream neuron before these spikes could excite the downstream region. Furthermore, we could decode animal location within 3 ms using data from a population of individual hippocampal neurons. These results demonstrate our system’s suitability for a broad spectrum of research and clinical applications.
bioRxiv PrePrint https://doi.org/10.1101/2023.09.14.557854