Main Menu (Mobile)- Block
- Overview
-
Support Teams
- Overview
- Anatomy and Histology
- Cryo-Electron Microscopy
- Electron Microscopy
- Flow Cytometry
- Gene Targeting and Transgenics
- Immortalized Cell Line Culture
- Integrative Imaging
- Invertebrate Shared Resource
- Janelia Experimental Technology
- Mass Spectrometry
- Media Prep
- Molecular Genomics
- Primary & iPS Cell Culture
- Project Pipeline Support
- Project Technical Resources
- Quantitative Genomics
- Scientific Computing Software
- Scientific Computing Systems
- Viral Tools
- Vivarium
- Open Science
- You + Janelia
- About Us
Main Menu - Block
- Overview
- Anatomy and Histology
- Cryo-Electron Microscopy
- Electron Microscopy
- Flow Cytometry
- Gene Targeting and Transgenics
- Immortalized Cell Line Culture
- Integrative Imaging
- Invertebrate Shared Resource
- Janelia Experimental Technology
- Mass Spectrometry
- Media Prep
- Molecular Genomics
- Primary & iPS Cell Culture
- Project Pipeline Support
- Project Technical Resources
- Quantitative Genomics
- Scientific Computing Software
- Scientific Computing Systems
- Viral Tools
- Vivarium

Note: Research in this publication was not performed at Janelia.
Abstract
The establishment and maintenance of spermatogenesis in mammals requires specialized networks of gene expression programs in the testis. The gonad-specific TAF4b component of TFIID (formerly TAF(II)105) is a transcriptional regulator enriched in the mouse testis. Herein we show that TAF4b is required for maintenance of spermatogenesis in the mouse. While young Taf4b-null males are initially fertile, Taf4b-null males become infertile by 3 mo of age and eventually exhibit seminiferous tubules devoid of germ cells. At birth, testes of Taf4b-null males appear histologically normal; however, at post-natal day 3 gonocyte proliferation is impaired and expression of spermatogonial stem cell markers c-Ret, Plzf, and Stra8 is reduced. Together, these data indicate that TAF4b is required for the precise expression of gene products essential for germ cell proliferation and suggest that TAF4b may be required for the regulation of spermatogonial stem cell specification and proliferation that is obligatory for normal spermatogenic maintenance in the adult.