Main Menu (Mobile)- Block
- Overview
-
Support Teams
- Overview
- Anatomy and Histology
- Cryo-Electron Microscopy
- Electron Microscopy
- Flow Cytometry
- Gene Targeting and Transgenics
- Immortalized Cell Line Culture
- Integrative Imaging
- Invertebrate Shared Resource
- Janelia Experimental Technology
- Mass Spectrometry
- Media Prep
- Molecular Genomics
- Primary & iPS Cell Culture
- Project Pipeline Support
- Project Technical Resources
- Quantitative Genomics
- Scientific Computing Software
- Scientific Computing Systems
- Viral Tools
- Vivarium
- Open Science
- You + Janelia
- About Us
Labs:
Project Teams:
Main Menu - Block
Labs:
Project Teams:
- Overview
- Anatomy and Histology
- Cryo-Electron Microscopy
- Electron Microscopy
- Flow Cytometry
- Gene Targeting and Transgenics
- Immortalized Cell Line Culture
- Integrative Imaging
- Invertebrate Shared Resource
- Janelia Experimental Technology
- Mass Spectrometry
- Media Prep
- Molecular Genomics
- Primary & iPS Cell Culture
- Project Pipeline Support
- Project Technical Resources
- Quantitative Genomics
- Scientific Computing Software
- Scientific Computing Systems
- Viral Tools
- Vivarium
janelia7_blocks-janelia7_biblio_header | block
Langmuir: The ACS Journal of Surfaces and Colloids. 2005 Jul 5;21(14):6430-5. doi: 10.1021/la050372r
Many-particle tracking with nanometer resolution in three dimensions by reflection interference contrast microscopy.

Clack NG, Groves JT
Note: Research in this publication was not performed at Janelia.
janelia7_blocks-janelia7_biblio_abstract | block
Abstract
We have developed and characterized a method, based on reflection interference contrast microscopy, to simultaneously determine the three-dimensional positions of multiple particles in a colloidal monolayer. To evaluate this method, the interaction of 6.8 microm (+/-5%) diameter lipid-derivatized silica microspheres with an underlying planar borosilicate substrate is studied. Measured colloidal height distributions are consistent with expectations for an electrostatically levitated colloidal monolayer. The precision of the method is analyzed using experimental techniques in addition to computational bootstrapping algorithms. In its present implementation, this technique achieves 16 nm lateral and 1 nm vertical precision.
PMID: 15982050 [PubMed - indexed for MEDLINE]
node:body | entity_field
janelia7_blocks-janelia7_biblio_authors | block
Janelia Authors
janelia7_blocks-janelia7_biblio_tools | block