Main Menu (Mobile)- Block
- Overview
-
Support Teams
- Overview
- Anatomy and Histology
- Cryo-Electron Microscopy
- Electron Microscopy
- Flow Cytometry
- Gene Targeting and Transgenics
- Immortalized Cell Line Culture
- Integrative Imaging
- Invertebrate Shared Resource
- Janelia Experimental Technology
- Mass Spectrometry
- Media Prep
- Molecular Genomics
- Primary & iPS Cell Culture
- Project Pipeline Support
- Project Technical Resources
- Quantitative Genomics
- Scientific Computing Software
- Scientific Computing Systems
- Viral Tools
- Vivarium
- Open Science
- You + Janelia
- About Us
Main Menu - Block
- Overview
- Anatomy and Histology
- Cryo-Electron Microscopy
- Electron Microscopy
- Flow Cytometry
- Gene Targeting and Transgenics
- Immortalized Cell Line Culture
- Integrative Imaging
- Invertebrate Shared Resource
- Janelia Experimental Technology
- Mass Spectrometry
- Media Prep
- Molecular Genomics
- Primary & iPS Cell Culture
- Project Pipeline Support
- Project Technical Resources
- Quantitative Genomics
- Scientific Computing Software
- Scientific Computing Systems
- Viral Tools
- Vivarium

Abstract
The protein folding paradigm asserts that the three-dimensional structure of a protein is determined by its amino acid sequence. Here we show that a substantial population of proteins from the NusG superfamily of transcription factors do not adhere to this paradigm. Previous work demonstrated that one member of this superfamily has a regulatory domain that completely switches between α-helical and β-sheet folds, but the pervasiveness of this fold-switching mechanism is uncertain. To address this question, we developed a sequence-based predictor, which revealed that thousands of proteins from this superfamily switch folds. Circular dichroism and nuclear magnetic resonance spectroscopies of 10 sequence-diverse variants confirmed our predictions. By contrast, state-of-the-art methods based on the protein folding paradigm assume that related sequences adopt the same fold and thus predicted that the regulatory domains of all variants adopt only the β-sheet fold. Removal of this bias revealed that residue-residue contacts from both α-helical and β-sheet folds are conserved in a large subpopulation of fold-switching domains, poising them to assume disparate conformations. Our results suggest that fold switching is a pervasive mechanism of transcriptional regulation in all kingdoms of life and indicate that expanding the protein folding paradigm may reveal the involvement of fold-switching proteins in diverse biological processes.