Main Menu (Mobile)- Block
- Overview
-
Support Teams
- Overview
- Anatomy and Histology
- Cryo-Electron Microscopy
- Electron Microscopy
- Flow Cytometry
- Gene Targeting and Transgenics
- Immortalized Cell Line Culture
- Integrative Imaging
- Invertebrate Shared Resource
- Janelia Experimental Technology
- Mass Spectrometry
- Media Prep
- Molecular Genomics
- Primary & iPS Cell Culture
- Project Pipeline Support
- Project Technical Resources
- Quantitative Genomics
- Scientific Computing Software
- Scientific Computing Systems
- Viral Tools
- Vivarium
- Open Science
- You + Janelia
- About Us
Main Menu - Block
- Overview
- Anatomy and Histology
- Cryo-Electron Microscopy
- Electron Microscopy
- Flow Cytometry
- Gene Targeting and Transgenics
- Immortalized Cell Line Culture
- Integrative Imaging
- Invertebrate Shared Resource
- Janelia Experimental Technology
- Mass Spectrometry
- Media Prep
- Molecular Genomics
- Primary & iPS Cell Culture
- Project Pipeline Support
- Project Technical Resources
- Quantitative Genomics
- Scientific Computing Software
- Scientific Computing Systems
- Viral Tools
- Vivarium
Note: Research in this publication was not performed at Janelia.
Abstract
In many machine learning applications, labeling every instance of data is burdensome. Multiple Instance Learning (MIL), in which training data is provided in the form of labeled bags rather than labeled instances, is one approach for a more relaxed form of supervised learning. Though much progress has been made in analyzing MIL problems, existing work considers bags that have a finite number of instances. In this paper we argue that in many applications of MIL (e.g. image, audio, etc.) the bags are better modeled as low dimensional manifolds in high dimensional feature space. We show that the geometric structure of such manifold bags affects PAC-learnability. We discuss how a learning algorithm that is designed for finite sized bags can be adapted to learn from manifold bags. Furthermore, we propose a simple heuristic that reduces the memory requirements of such algorithms. Our experiments on real-world data validate our analysis and show that our approach works well.