Main Menu (Mobile)- Block
- Overview
-
Support Teams
- Overview
- Anatomy and Histology
- Cryo-Electron Microscopy
- Electron Microscopy
- Flow Cytometry
- Gene Targeting and Transgenics
- Immortalized Cell Line Culture
- Integrative Imaging
- Invertebrate Shared Resource
- Janelia Experimental Technology
- Mass Spectrometry
- Media Prep
- Molecular Genomics
- Primary & iPS Cell Culture
- Project Pipeline Support
- Project Technical Resources
- Quantitative Genomics
- Scientific Computing Software
- Scientific Computing Systems
- Viral Tools
- Vivarium
- Open Science
- You + Janelia
- About Us
Main Menu - Block
- Overview
- Anatomy and Histology
- Cryo-Electron Microscopy
- Electron Microscopy
- Flow Cytometry
- Gene Targeting and Transgenics
- Immortalized Cell Line Culture
- Integrative Imaging
- Invertebrate Shared Resource
- Janelia Experimental Technology
- Mass Spectrometry
- Media Prep
- Molecular Genomics
- Primary & iPS Cell Culture
- Project Pipeline Support
- Project Technical Resources
- Quantitative Genomics
- Scientific Computing Software
- Scientific Computing Systems
- Viral Tools
- Vivarium

Abstract
Neuroscientists are now able to acquire data at staggering rates across spatiotemporal scales. However, our ability to capitalize on existing datasets, tools, and intellectual capacities is hampered by technical challenges. The key barriers to accelerating scientific discovery correspond to the FAIR data principles: findability, global access to data, software interoperability, and reproducibility/re-usability. We conducted a hackathon dedicated to making strides in those steps. This manuscript is a technical report summarizing these achievements, and we hope serves as an example of the effectiveness of focused, deliberate hackathons towards the advancement of our quickly-evolving field.
Additional authors: Eric T. Trautman, Daniel J. Tward, Pedro Antonio Valdés-Sosa, Qing Wang, Michael I. Miller, Randal Burns, Joshua T. Vogelstein.