Main Menu (Mobile)- Block
- Overview
-
Support Teams
- Overview
- Anatomy and Histology
- Cryo-Electron Microscopy
- Electron Microscopy
- Flow Cytometry
- Gene Targeting and Transgenics
- Immortalized Cell Line Culture
- Integrative Imaging
- Invertebrate Shared Resource
- Janelia Experimental Technology
- Mass Spectrometry
- Media Prep
- Molecular Genomics
- Primary & iPS Cell Culture
- Project Pipeline Support
- Project Technical Resources
- Quantitative Genomics
- Scientific Computing Software
- Scientific Computing Systems
- Viral Tools
- Vivarium
- Open Science
- You + Janelia
- About Us
Main Menu - Block
- Overview
- Anatomy and Histology
- Cryo-Electron Microscopy
- Electron Microscopy
- Flow Cytometry
- Gene Targeting and Transgenics
- Immortalized Cell Line Culture
- Integrative Imaging
- Invertebrate Shared Resource
- Janelia Experimental Technology
- Mass Spectrometry
- Media Prep
- Molecular Genomics
- Primary & iPS Cell Culture
- Project Pipeline Support
- Project Technical Resources
- Quantitative Genomics
- Scientific Computing Software
- Scientific Computing Systems
- Viral Tools
- Vivarium
Abstract
How nicotine exposure produces long-lasting changes that remodel neural circuits with addiction is unknown. Here, we report that long-term nicotine exposure alters the trafficking of α4β2-type nicotinic acetylcholine receptors (α4β2Rs) by dispersing and redistributing the Golgi apparatus. In cultured neurons, dispersed Golgi membranes were distributed throughout somata, dendrites and axons. Small, mobile vesicles in dendrites and axons lacked standard Golgi markers and were identified by other Golgi enzymes that modify glycans. Nicotine exposure increased levels of dispersed Golgi membranes, which required α4β2R expression. Similar nicotine-induced changes occurred in vivo at dopaminergic neurons at mouse nucleus accumbens terminals, consistent with these events contributing to nicotine’s addictive effects. Characterization in vitro demonstrated that dispersal was reversible, that dispersed Golgi membranes were functional, and that membranes were heterogenous in size, with smaller vesicles emerging from larger “ministacks”, similar to Golgi dispersal induced by nocadazole. Protocols that increased cultured neuronal synaptic excitability also increased Golgi dispersal, without the requirement of α4β2R expression. Our findings reveal novel activity- and nicotine-dependent changes in neuronal intracellular morphology. These changes regulate levels and location of dispersed Golgi membranes at dendrites and axons, which function in local trafficking at subdomains.
bioRxiv PrePrint https://doi.org/10.1101/2020.02.25.965285