Main Menu (Mobile)- Block
- Overview
-
Support Teams
- Overview
- Anatomy and Histology
- Cryo-Electron Microscopy
- Electron Microscopy
- Flow Cytometry
- Gene Targeting and Transgenics
- Immortalized Cell Line Culture
- Integrative Imaging
- Invertebrate Shared Resource
- Janelia Experimental Technology
- Mass Spectrometry
- Media Prep
- Molecular Genomics
- Primary & iPS Cell Culture
- Project Pipeline Support
- Project Technical Resources
- Quantitative Genomics
- Scientific Computing Software
- Scientific Computing Systems
- Viral Tools
- Vivarium
- Open Science
- You + Janelia
- About Us
Main Menu - Block
- Overview
- Anatomy and Histology
- Cryo-Electron Microscopy
- Electron Microscopy
- Flow Cytometry
- Gene Targeting and Transgenics
- Immortalized Cell Line Culture
- Integrative Imaging
- Invertebrate Shared Resource
- Janelia Experimental Technology
- Mass Spectrometry
- Media Prep
- Molecular Genomics
- Primary & iPS Cell Culture
- Project Pipeline Support
- Project Technical Resources
- Quantitative Genomics
- Scientific Computing Software
- Scientific Computing Systems
- Viral Tools
- Vivarium

Note: Research in this publication was not performed at Janelia.
Abstract
Electrophysiology and optical indicators have been used in vertebrate systems to investigate excitable cell firing and calcium transients, but both techniques have been difficult to apply in organisms with powerful reverse genetics. To overcome this limitation, we expressed cameleon proteins, genetically encoded calcium indicators, in the pharyngeal muscle of the nematode worm Caenorhabditis elegans. In intact transgenic animals expressing cameleons, fluorescence ratio changes accompanied muscular contraction, verifying detection of calcium transients. By comparing the magnitude and duration of calcium influx in wild-type and mutant animals, we were able to determine the effects of calcium channel proteins on pharyngeal calcium transients. We also successfully used cameleons to detect electrically evoked calcium transients in individual C. elegans neurons. This technique therefore should have broad applications in analyzing the regulation of excitable cell activity in genetically tractable organisms.