Main Menu (Mobile)- Block
- Overview
-
Support Teams
- Overview
- Anatomy and Histology
- Cryo-Electron Microscopy
- Electron Microscopy
- Flow Cytometry
- Gene Targeting and Transgenics
- Immortalized Cell Line Culture
- Integrative Imaging
- Invertebrate Shared Resource
- Janelia Experimental Technology
- Mass Spectrometry
- Media Prep
- Molecular Genomics
- Primary & iPS Cell Culture
- Project Pipeline Support
- Project Technical Resources
- Quantitative Genomics
- Scientific Computing Software
- Scientific Computing Systems
- Viral Tools
- Vivarium
- Open Science
- You + Janelia
- About Us
Main Menu - Block
- Overview
- Anatomy and Histology
- Cryo-Electron Microscopy
- Electron Microscopy
- Flow Cytometry
- Gene Targeting and Transgenics
- Immortalized Cell Line Culture
- Integrative Imaging
- Invertebrate Shared Resource
- Janelia Experimental Technology
- Mass Spectrometry
- Media Prep
- Molecular Genomics
- Primary & iPS Cell Culture
- Project Pipeline Support
- Project Technical Resources
- Quantitative Genomics
- Scientific Computing Software
- Scientific Computing Systems
- Viral Tools
- Vivarium

Note: Research in this publication was not performed at Janelia.
Abstract
Experimental investigations have revealed that synapses possess interesting and, in some cases, unexpected properties. We propose a theoretical framework that accounts for three of these properties: typical central synapses are noisy, the distribution of synaptic weights among central synapses is wide, and synaptic connectivity between neurons is sparse. We also comment on the possibility that synaptic weights may vary in discrete steps. Our approach is based on maximizing information storage capacity of neural tissue under resource constraints. Based on previous experimental and theoretical work, we use volume as a limited resource and utilize the empirical relationship between volume and synaptic weight. Solutions of our constrained optimization problems are not only consistent with existing experimental measurements but also make nontrivial predictions.