Main Menu (Mobile)- Block
- Overview
-
Support Teams
- Overview
- Anatomy and Histology
- Cryo-Electron Microscopy
- Electron Microscopy
- Flow Cytometry
- Gene Targeting and Transgenics
- High Performance Computing
- Immortalized Cell Line Culture
- Integrative Imaging
- Invertebrate Shared Resource
- Janelia Experimental Technology
- Mass Spectrometry
- Media Prep
- Molecular Genomics
- Primary & iPS Cell Culture
- Project Pipeline Support
- Project Technical Resources
- Quantitative Genomics
- Scientific Computing
- Viral Tools
- Vivarium
- Open Science
- You + Janelia
- About Us
Main Menu - Block
- Overview
- Anatomy and Histology
- Cryo-Electron Microscopy
- Electron Microscopy
- Flow Cytometry
- Gene Targeting and Transgenics
- High Performance Computing
- Immortalized Cell Line Culture
- Integrative Imaging
- Invertebrate Shared Resource
- Janelia Experimental Technology
- Mass Spectrometry
- Media Prep
- Molecular Genomics
- Primary & iPS Cell Culture
- Project Pipeline Support
- Project Technical Resources
- Quantitative Genomics
- Scientific Computing
- Viral Tools
- Vivarium
Abstract
Power-law scaling in coarse-grained data suggests critical dynamics, but the true source of this scaling often remains unclear. Here, we analyze neural activity recorded during spatial navigation, reproducing power-law scaling under a phenomenological renormalization group (PRG) procedure that clusters units by activity similarity. Such scaling was previously linked to criticality. Here, we show that the iterative nature of the procedure itself leads to the emergence of power laws when applied to heterogeneous, non-interacting units obeying spatially structured activity without requiring critical interactions. Furthermore, the scaling exponents produced by heteregeneous non-interacting units match the observed exponents in recorded neural data. A simplified version of the PRG further reveals how heterogeneity smooths transitions across scales, mimicking critical behavior. The resulting exponents depend systematically on system and population size, predictions confirmed by subsampling the data.



