Main Menu (Mobile)- Block
- Overview
-
Support Teams
- Overview
- Anatomy and Histology
- Cryo-Electron Microscopy
- Electron Microscopy
- Flow Cytometry
- Gene Targeting and Transgenics
- Immortalized Cell Line Culture
- Integrative Imaging
- Invertebrate Shared Resource
- Janelia Experimental Technology
- Mass Spectrometry
- Media Prep
- Molecular Genomics
- Primary & iPS Cell Culture
- Project Pipeline Support
- Project Technical Resources
- Quantitative Genomics
- Scientific Computing Software
- Scientific Computing Systems
- Viral Tools
- Vivarium
- Open Science
- You + Janelia
- About Us
Main Menu - Block
- Overview
- Anatomy and Histology
- Cryo-Electron Microscopy
- Electron Microscopy
- Flow Cytometry
- Gene Targeting and Transgenics
- Immortalized Cell Line Culture
- Integrative Imaging
- Invertebrate Shared Resource
- Janelia Experimental Technology
- Mass Spectrometry
- Media Prep
- Molecular Genomics
- Primary & iPS Cell Culture
- Project Pipeline Support
- Project Technical Resources
- Quantitative Genomics
- Scientific Computing Software
- Scientific Computing Systems
- Viral Tools
- Vivarium
Note: Research in this publication was not performed at Janelia.
Abstract
We investigate a practical approach to solving one instantiation of a distributed hypothesis testing problem under severe rate constraints that shows up in a wide variety of applications such as camera calibration, biometric authentication and video hashing: given two distributed continuous-valued random sources, determine if they satisfy a certain Euclidean distance criterion. We show a way to convert the problem from continuous-valued to binary-valued using binarized random projections and obtain rate savings by applying a linear syndrome code. In finding visual correspondences, our approach uses just 49% of the rate of scalar quantization to achieve the same level of retrieval performance. To perform video hashing, our approach requires only a hash rate of 0.0142 bpp to identify corresponding groups of pictures correctly.