Main Menu (Mobile)- Block
- Overview
-
Support Teams
- Overview
- Anatomy and Histology
- Cryo-Electron Microscopy
- Electron Microscopy
- Flow Cytometry
- Gene Targeting and Transgenics
- Immortalized Cell Line Culture
- Integrative Imaging
- Invertebrate Shared Resource
- Janelia Experimental Technology
- Mass Spectrometry
- Media Prep
- Molecular Genomics
- Primary & iPS Cell Culture
- Project Pipeline Support
- Project Technical Resources
- Quantitative Genomics
- Scientific Computing Software
- Scientific Computing Systems
- Viral Tools
- Vivarium
- Open Science
- You + Janelia
- About Us
Main Menu - Block
- Overview
- Anatomy and Histology
- Cryo-Electron Microscopy
- Electron Microscopy
- Flow Cytometry
- Gene Targeting and Transgenics
- Immortalized Cell Line Culture
- Integrative Imaging
- Invertebrate Shared Resource
- Janelia Experimental Technology
- Mass Spectrometry
- Media Prep
- Molecular Genomics
- Primary & iPS Cell Culture
- Project Pipeline Support
- Project Technical Resources
- Quantitative Genomics
- Scientific Computing Software
- Scientific Computing Systems
- Viral Tools
- Vivarium

Note: Research in this publication was not performed at Janelia.
Abstract
We consider the problem of communicating compact descriptors for the purpose of establishing visual correspondences between two cameras operating under rate constraints. Establishing visual correspondences is a critical step before other tasks such as camera calibration or object recognition can be performed in a network of cameras. We verify that descriptors of regions which are in correspondence are highly correlated, and propose the use of distributed source coding to reduce the bandwidth needed for transmitting descriptors required to establish correspondence. Our experiments demonstrate that the proposed scheme is able to provide compression gains of 57% with minimal loss in the number of correctly established correspondences compared to a scheme that communicates the entire image of the scene losslessly in compressed form. Over a wide range of rates, the proposed scheme also provides superior performance when compared to simply transmitting all the feature descriptors.