Main Menu (Mobile)- Block
- Overview
-
Support Teams
- Overview
- Anatomy and Histology
- Cryo-Electron Microscopy
- Electron Microscopy
- Flow Cytometry
- Gene Targeting and Transgenics
- Immortalized Cell Line Culture
- Integrative Imaging
- Invertebrate Shared Resource
- Janelia Experimental Technology
- Mass Spectrometry
- Media Prep
- Molecular Genomics
- Primary & iPS Cell Culture
- Project Pipeline Support
- Project Technical Resources
- Quantitative Genomics
- Scientific Computing Software
- Scientific Computing Systems
- Viral Tools
- Vivarium
- Open Science
- You + Janelia
- About Us
Main Menu - Block
- Overview
- Anatomy and Histology
- Cryo-Electron Microscopy
- Electron Microscopy
- Flow Cytometry
- Gene Targeting and Transgenics
- Immortalized Cell Line Culture
- Integrative Imaging
- Invertebrate Shared Resource
- Janelia Experimental Technology
- Mass Spectrometry
- Media Prep
- Molecular Genomics
- Primary & iPS Cell Culture
- Project Pipeline Support
- Project Technical Resources
- Quantitative Genomics
- Scientific Computing Software
- Scientific Computing Systems
- Viral Tools
- Vivarium

Abstract
Environmental influences on immune phenotypes are well-documented, but our understanding of which elements of the environment affect immune systems, and how, remains vague. Behaviors, including socializing with others, are central to an individual’s interaction with its environment. We tracked behavior of rewilded laboratory mice of three inbred strains in outdoor enclosures and examined contributions of behavior, including social associations, to immune phenotypes. We found that the more associated two individuals were, the more similar their immune phenotypes were. Social association was particularly predictive of similar memory T and B cell profiles and was more influential than sibling relationships or worm infection status. These results highlight the importance of social networks for immune phenotype and reveal important immunological correlates of social life.
bioRxiv PrePrint https://doi.org/10.1101/2023.03.15.532825