Main Menu (Mobile)- Block
- Overview
-
Support Teams
- Overview
- Anatomy and Histology
- Cryo-Electron Microscopy
- Electron Microscopy
- Flow Cytometry
- Gene Targeting and Transgenics
- Immortalized Cell Line Culture
- Integrative Imaging
- Invertebrate Shared Resource
- Janelia Experimental Technology
- Mass Spectrometry
- Media Prep
- Molecular Genomics
- Primary & iPS Cell Culture
- Project Pipeline Support
- Project Technical Resources
- Quantitative Genomics
- Scientific Computing Software
- Scientific Computing Systems
- Viral Tools
- Vivarium
- Open Science
- You + Janelia
- About Us
Main Menu - Block
- Overview
- Anatomy and Histology
- Cryo-Electron Microscopy
- Electron Microscopy
- Flow Cytometry
- Gene Targeting and Transgenics
- Immortalized Cell Line Culture
- Integrative Imaging
- Invertebrate Shared Resource
- Janelia Experimental Technology
- Mass Spectrometry
- Media Prep
- Molecular Genomics
- Primary & iPS Cell Culture
- Project Pipeline Support
- Project Technical Resources
- Quantitative Genomics
- Scientific Computing Software
- Scientific Computing Systems
- Viral Tools
- Vivarium
Abstract
Cellular heterogeneity within complex tissues and organs is essential to coordinate biological processes across biological scales. The effect of local cues and tissue microenvironments on cell heterogeneity has been mainly studied at the transcriptional level. However, it is within the subcellular scale - the organelles - that lays the machinery to conduct most metabolic reactions and maintain cells alive, ensuring proper tissue function. How changes in subcellular organization under different microenvironments define the functional diversity of cells within organs remains largely unexplored. Here we determine how organelles adapt to different microenvironments using the mouse liver as model system, in combination with computational approaches and machine-learning. To understand organelle adaptation in response to changing nutritional conditions, we analyzed 3D fluorescent microscopy volumes of liver samples labeled to simultaneously visualize mitochondria, peroxisomes, and lipid droplets from mice subjected to different diets: a control diet, a high-fat diet, and a control diet plus fasting. A Cellpose based pipeline was implemented for cell and organelle segmentation, which allowed us to measure 100 different organelle metrics and helped us define subcellular architectures in liver samples at the single cell level. Our results showed that hepatocytes display distinct subcellular architectures within different regions of the liver-close to the central vein, in the middle region, and near the portal vein- and across the various diet groups, thus reflecting their adaptation to specific nutritional inputs. Principal component analysis and clustering of hepatocytes based on organelle signatures revealed 12 different hepatocyte categories within the different experimental groups, highlighting a reduction in hepatocyte heterogeneity under nutritional perturbations. Finally, using single cell organelle signatures exclusively, we generated machine learning models that were able to predict with high accuracy different hepatocyte categories, diet groups, and the stages of MASLD. Our results demonstrate how organelle signatures can be used as hallmarks to define hepatocyte heterogeneity and their adaptation to different nutritional conditions. In the future, our strategy, which combines subcellular resolution imaging of liver volumes and machine learning, could help establish protocols to better define and predict liver disease progression.