Main Menu (Mobile)- Block
- Overview
-
Support Teams
- Overview
- Anatomy and Histology
- Cryo-Electron Microscopy
- Electron Microscopy
- Flow Cytometry
- Gene Targeting and Transgenics
- Immortalized Cell Line Culture
- Integrative Imaging
- Invertebrate Shared Resource
- Janelia Experimental Technology
- Mass Spectrometry
- Media Prep
- Molecular Genomics
- Primary & iPS Cell Culture
- Project Pipeline Support
- Project Technical Resources
- Quantitative Genomics
- Scientific Computing Software
- Scientific Computing Systems
- Viral Tools
- Vivarium
- Open Science
- You + Janelia
- About Us
Main Menu - Block
- Overview
- Anatomy and Histology
- Cryo-Electron Microscopy
- Electron Microscopy
- Flow Cytometry
- Gene Targeting and Transgenics
- Immortalized Cell Line Culture
- Integrative Imaging
- Invertebrate Shared Resource
- Janelia Experimental Technology
- Mass Spectrometry
- Media Prep
- Molecular Genomics
- Primary & iPS Cell Culture
- Project Pipeline Support
- Project Technical Resources
- Quantitative Genomics
- Scientific Computing Software
- Scientific Computing Systems
- Viral Tools
- Vivarium

Abstract
A variant Hb zeta(2)beta(s)(2) that is formed from sickle hemoglobin (Hb S; alpha(2)beta(s)(2)) by exchanging adult alpha-globin with embryonic zeta-globin subunits shows promise as a therapeutic agent for sickle-cell disease (SCD). Hb zeta(2)beta(s)(2) inhibits the polymerization of deoxygenated Hb S in vitro and reverses characteristic features of SCD in vivo in mouse models of the disorder. When compared with either Hb S or with normal human adult Hb A (alpha(2)beta(2)), Hb zeta(2)beta(s)(2) exhibits atypical properties that include a high oxygen affinity, reduced cooperativity, a weak Bohr effect and blunted 2,3-diphosphoglycerate allostery. Here, the 1.95 angstrom resolution crystal structure of human Hb zeta(2)beta(s)(2) that was expressed in complex transgenic knockout mice and purified from their erythrocytes is presented. When fully liganded with carbon monoxide, Hb zeta(2)beta(s)(2) displays a central water cavity, a zeta 1-beta(s)2 (or zeta 2-beta(s)1) interface, intersubunit salt-bridge/hydrogen-bond interactions, C-terminal beta His146 salt-bridge interactions, and a beta-cleft, that are highly unusual for a relaxed hemoglobin structure and are more typical of a tense conformation. These quaternary tense-like features contrast with the tertiary relaxed-like conformations of the zeta 1-beta(s1) dimer and the CD and FG corners, as well as the overall structures of the heme cavities. This crystallographic study provides insights into the altered oxygen-transport properties of Hb zeta(2)beta(s)(2) and, moreover, decouples tertiary- and quaternary-structural events that are critical to Hb ligand binding and allosteric function.