Main Menu (Mobile)- Block
- Overview
-
Support Teams
- Overview
- Anatomy and Histology
- Cryo-Electron Microscopy
- Electron Microscopy
- Flow Cytometry
- Gene Targeting and Transgenics
- Immortalized Cell Line Culture
- Integrative Imaging
- Invertebrate Shared Resource
- Janelia Experimental Technology
- Mass Spectrometry
- Media Prep
- Molecular Genomics
- Primary & iPS Cell Culture
- Project Pipeline Support
- Project Technical Resources
- Quantitative Genomics
- Scientific Computing Software
- Scientific Computing Systems
- Viral Tools
- Vivarium
- Open Science
- You + Janelia
- About Us
Main Menu - Block
- Overview
- Anatomy and Histology
- Cryo-Electron Microscopy
- Electron Microscopy
- Flow Cytometry
- Gene Targeting and Transgenics
- Immortalized Cell Line Culture
- Integrative Imaging
- Invertebrate Shared Resource
- Janelia Experimental Technology
- Mass Spectrometry
- Media Prep
- Molecular Genomics
- Primary & iPS Cell Culture
- Project Pipeline Support
- Project Technical Resources
- Quantitative Genomics
- Scientific Computing Software
- Scientific Computing Systems
- Viral Tools
- Vivarium

Note: Research in this publication was not performed at Janelia.
Abstract
The insulin signaling pathway, which is conserved in evolution from flies to humans, evolved to allow a fast response to changes in nutrient availability while keeping glucose concentration constant in serum. Here we show that, both in Drosophila and mammals, insulin receptor (InR) represses its own synthesis by a feedback mechanism directed by the transcription factor dFOXO/FOXO1. In Drosophila, dFOXO is responsible for activating transcription of dInR, and nutritional conditions can modulate this effect. Starvation up-regulates mRNA of dInR in wild-type but not dFOXO-deficient flies. Importantly, FOXO1 acts in mammalian cells like its Drosophila counterpart, up-regulating the InR mRNA level upon fasting. Mammalian cells up-regulate the InR mRNA in the absence of serum, conditions that induce the dephosphorylation and activation of FOXO1. Interestingly, insulin is able to reverse this effect. Therefore, dFOXO/FOXO1 acts as an insulin sensor to activate insulin signaling, allowing a fast response to the hormone after each meal. Our results reveal a key feedback control mechanism for dFOXO/FOXO1 in regulating metabolism and insulin signaling.