Main Menu (Mobile)- Block
- Overview
-
Support Teams
- Overview
- Anatomy and Histology
- Cryo-Electron Microscopy
- Electron Microscopy
- Flow Cytometry
- Gene Targeting and Transgenics
- Immortalized Cell Line Culture
- Integrative Imaging
- Invertebrate Shared Resource
- Janelia Experimental Technology
- Mass Spectrometry
- Media Prep
- Molecular Genomics
- Primary & iPS Cell Culture
- Project Pipeline Support
- Project Technical Resources
- Quantitative Genomics
- Scientific Computing Software
- Scientific Computing Systems
- Viral Tools
- Vivarium
- Open Science
- You + Janelia
- About Us
Main Menu - Block
- Overview
- Anatomy and Histology
- Cryo-Electron Microscopy
- Electron Microscopy
- Flow Cytometry
- Gene Targeting and Transgenics
- Immortalized Cell Line Culture
- Integrative Imaging
- Invertebrate Shared Resource
- Janelia Experimental Technology
- Mass Spectrometry
- Media Prep
- Molecular Genomics
- Primary & iPS Cell Culture
- Project Pipeline Support
- Project Technical Resources
- Quantitative Genomics
- Scientific Computing Software
- Scientific Computing Systems
- Viral Tools
- Vivarium

Note: Research in this publication was not performed at Janelia.
Abstract
Male orchid bees of the species Eulaema meriana buzz their wings while stationary at territory perches. During buzzing, wings are first positioned laterally and then moved in a plane parallel to the ground, which probably generates a substantial airflow past the body. Within a perching episode, the ratio of buzz to pause duration decreases nonlinearly. The incidence of wing buzzing increases with ambient temperature and with duration of activity. Bees never defended territories when ambient temperatures exceeded 28.5°C. Wing buzzing may be a visual or acoustic display to conspecifics, although the brightly colored abdomen is never obscured by the wings during buzzing, and the sounds of wing buzzing are low in amplitude. The increase in buzzing frequency with increased ambient temperature and the nonlinear decrease in buzz to pause duration during perching suggest that wing buzzing may be a thermoregulatory mechanism.