Main Menu (Mobile)- Block

Main Menu - Block

custom | custom

Search Results

general_search_page-panel_pane_1 | views_panes

30 Janelia Publications

Showing 1-10 of 30 results
Your Criteria:
    01/10/25 | A critical initialization for biological neural networks
    Pachitariu M, Zhong L, Gracias A, Minisi A, Lopez C, Stringer C
    bioRxiv. 01/2025:. doi: 10.1101/2025.01.10.632397

    Artificial neural networks learn faster if they are initialized well. Good initializations can generate high-dimensional macroscopic dynamics with long timescales. It is not known if biological neural networks have similar properties. Here we show that the eigenvalue spectrum and dynamical properties of large-scale neural recordings in mice (two-photon and electrophysiology) are similar to those produced by linear dynamics governed by a random symmetric matrix that is critically normalized. An exception was hippocampal area CA1: population activity in this area resembled an efficient, uncorrelated neural code, which may be optimized for information storage capacity. Global emergent activity modes persisted in simulations with sparse, clustered or spatial connectivity. We hypothesize that the spontaneous neural activity reflects a critical initialization of whole-brain neural circuits that is optimized for learning time-dependent tasks.

    View Publication Page
    09/20/24 | A modular chemigenetic calcium indicator for multiplexed in vivo functional imaging.
    Farrants H, Shuai Y, Lemon WC, Monroy Hernandez C, Zhang D, Yang S, Patel R, Qiao G, Frei MS, Plutkis SE, Grimm JB, Hanson TL, Tomaska F, Turner GC, Stringer C, Keller PJ, Beyene AG, Chen Y, Liang Y, Lavis LD, Schreiter ER
    Nat Methods. 2024 Sep 20:. doi: 10.1038/s41592-024-02411-6

    Genetically encoded fluorescent calcium indicators allow cellular-resolution recording of physiology. However, bright, genetically targetable indicators that can be multiplexed with existing tools in vivo are needed for simultaneous imaging of multiple signals. Here we describe WHaloCaMP, a modular chemigenetic calcium indicator built from bright dye-ligands and protein sensor domains. Fluorescence change in WHaloCaMP results from reversible quenching of the bound dye via a strategically placed tryptophan. WHaloCaMP is compatible with rhodamine dye-ligands that fluoresce from green to near-infrared, including several that efficiently label the brain in animals. When bound to a near-infrared dye-ligand, WHaloCaMP shows a 7× increase in fluorescence intensity and a 2.1-ns increase in fluorescence lifetime upon calcium binding. We use WHaloCaMP1a to image Ca responses in vivo in flies and mice, to perform three-color multiplexed functional imaging of hundreds of neurons and astrocytes in zebrafish larvae and to quantify Ca concentration using fluorescence lifetime imaging microscopy (FLIM).

    View Publication Page
    04/21/25 | Abstract 2420: Deep learning enables automated detection of circulating tumor cell-immune cell interactions with prognostic insights in cancer
    Sun Y, Squires JR, Hoffmann A, Zhang Y, Minor A, Singh A, Scholten D, Mao C, Luo Y, Fang D, Gradishar WJ, Cristofanilli M, Stringer C, Liu H
    Cancer Research. 2025 Apr 21;85:2420-2420. doi: 10.1158/1538-7445.AM2025-2420

    Circulating tumor cells (CTCs) are critical biomarkers for predicting therapy response and survival in breast cancer patients. Multicellular CTC clusters exhibit enhanced metastatic potential, yet their detection and characterization are constrained by low frequency in blood samples and reliance on labor-intensive manual analysis. Advancing these methods could significantly improve prognostic evaluation and therapeutic strategies.Leveraging FDA-approved CellSearch technology and single-cell sequencing, we analyzed 2, 853 blood specimens, longitudinally collected from 1358 patients with advanced cancer (breast, prostate, etc) and other diseases. Integrating machine learning and deep learning tools, we developed a novel CTCpose platform to automate detection and analysis of CTCs, immune cells, and their interactions. Using artificial intelligence (AI)-driven image analysis, we extracted over 270 cellular and nuclear features including intensity, morphometry, fourier shape, gradient/edge, and haralick of cytokeratin, CD45, and DAPI expression patterns, enabling precise characterization of CTCs, white blood cells (WBCs), CTC clusters, and their interactions with immune cells (WBCs).The CTCpose platform enabled automated identification of CTCs, WBCs, homotypic CTC clusters, heterogenous CTC-WBC clusters, and immune cell clusters, providing comprehensive insights into cell morphology, biomarker expression, and spatial organization. These features correlated with patient survival, disease progression, and treatment response. Our findings highlight the clinical significance of CTC-immune cell interactions and dynamic alterations of CTCs (singles and clusters) and underscore their potential in stratifying patients into distinct risk categories.This study demonstrates the transformative potential of deep learning in overcoming limitations of traditional CTC detection methods and integrating imaging data with large cohorts of patient data. By automating and enhancing the analysis of CTC-immune cell interactions, we present a robust framework for developing predictive models with direct clinical relevance. This work opens avenues for personalized treatment strategies, underscoring the impact of AI in advancing precision oncology.Yuanfei Sun, Joshua R. Squires, Andrew Hoffmann, Youbin Zhang, Allegra Minor, Anmol Singh, David Scholten, Chengsheng Mao, Yuan Luo, Deyu Fang, William J. Gradishar, Massimo Cristofanilli, Carsen Stringer, Huiping Liu. Deep learning enables automated detection of circulating tumor cell-immune cell interactions with prognostic insights in cancer [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2025; Part 1 (Regular Abstracts); 2025 Apr 25-30; Chicago, IL. Philadelphia (PA): AACR; Cancer Res 2025;85(8_Suppl_1):Abstract nr 2420.

    View Publication Page
    11/08/24 | Analysis methods for large-scale neuronal recordings.
    Stringer C, Pachitariu M
    Science. 2024 Nov 08;386(6722):eadp7429. doi: 10.1126/science.adp7429

    Simultaneous recordings from hundreds or thousands of neurons are becoming routine because of innovations in instrumentation, molecular tools, and data processing software. Such recordings can be analyzed with data science methods, but it is not immediately clear what methods to use or how to adapt them for neuroscience applications. We review, categorize, and illustrate diverse analysis methods for neural population recordings and describe how these methods have been used to make progress on longstanding questions in neuroscience. We review a variety of approaches, ranging from the mathematically simple to the complex, from exploratory to hypothesis-driven, and from recently developed to more established methods. We also illustrate some of the common statistical pitfalls in analyzing large-scale neural data.

    View Publication Page
    11/07/22 | Cellpose 2.0: how to train your own model.
    Pachitariu M, Stringer C
    Nature Methods. 2022 Nov 07;19(12):1634-41. doi: 10.1038/s41592-022-01663-4

    Pretrained neural network models for biological segmentation can provide good out-of-the-box results for many image types. However, such models do not allow users to adapt the segmentation style to their specific needs and can perform suboptimally for test images that are very different from the training images. Here we introduce Cellpose 2.0, a new package that includes an ensemble of diverse pretrained models as well as a human-in-the-loop pipeline for rapid prototyping of new custom models. We show that models pretrained on the Cellpose dataset can be fine-tuned with only 500-1,000 user-annotated regions of interest (ROI) to perform nearly as well as models trained on entire datasets with up to 200,000 ROI. A human-in-the-loop approach further reduced the required user annotation to 100-200 ROI, while maintaining high-quality segmentations. We provide software tools such as an annotation graphical user interface, a model zoo and a human-in-the-loop pipeline to facilitate the adoption of Cellpose 2.0.

    View Publication Page
    02/12/25 | Cellpose3: one-click image restoration for improved cellular segmentation.
    Stringer C, Pachitariu M
    Nat Methods. 2025 Feb 12:. doi: 10.1038/s41592-025-02595-5

    Generalist methods for cellular segmentation have good out-of-the-box performance on a variety of image types; however, existing methods struggle for images that are degraded by noise, blurring or undersampling, all of which are common in microscopy. We focused the development of Cellpose3 on addressing these cases and here we demonstrate substantial out-of-the-box gains in segmentation and image quality for noisy, blurry and undersampled images. Unlike previous approaches that train models to restore pixel values, we trained Cellpose3 to output images that are well segmented by a generalist segmentation model, while maintaining perceptual similarity to the target images. Furthermore, we trained the restoration models on a large, varied collection of datasets, thus ensuring good generalization to user images. We provide these tools as 'one-click' buttons inside the graphical interface of Cellpose as well as in the Cellpose API.

    View Publication Page
    02/03/20 | Cellpose: a generalist algorithm for cellular segmentation
    Stringer C, Michaelos M, Pachitariu M
    bioRxiv. 2020 Feb 03:. doi: 10.1101/2020.02.02.931238

    Many biological applications require the segmentation of cell bodies, membranes and nuclei from microscopy images. Deep learning has enabled great progress on this problem, but current methods are specialized for images that have large training datasets. Here we introduce a generalist, deep learning-based segmentation algorithm called Cellpose, which can very precisely segment a wide range of image types out-of-the-box and does not require model retraining or parameter adjustments. We trained Cellpose on a new dataset of highly-varied images of cells, containing over 70,000 segmented objects. To support community contributions to the training data, we developed software for manual labelling and for curation of the automated results, with optional direct upload to our data repository. Periodically retraining the model on the community-contributed data will ensure that Cellpose improves constantly.

    View Publication Page
    01/07/21 | Cellpose: a generalist algorithm for cellular segmentation.
    Stringer C, Wang T, Michaelos M, Pachitariu M
    Nature Methods. 2021 Jan 07;18(1):100-106. doi: 10.1038/s41592-020-01018-x

    Many biological applications require the segmentation of cell bodies, membranes and nuclei from microscopy images. Deep learning has enabled great progress on this problem, but current methods are specialized for images that have large training datasets. Here we introduce a generalist, deep learning-based segmentation method called Cellpose, which can precisely segment cells from a wide range of image types and does not require model retraining or parameter adjustments. Cellpose was trained on a new dataset of highly varied images of cells, containing over 70,000 segmented objects. We also demonstrate a three-dimensional (3D) extension of Cellpose that reuses the two-dimensional (2D) model and does not require 3D-labeled data. To support community contributions to the training data, we developed software for manual labeling and for curation of the automated results. Periodically retraining the model on the community-contributed data will ensure that Cellpose improves constantly.

    View Publication Page
    04/01/19 | Computational processing of neural recordings from calcium imaging data.
    Stringer C, Pachitariu M
    Current Opinion in Neurobiology. 2019 Apr ;55:22-31. doi: 10.1016/j.conb.2018.11.005

    Electrophysiology has long been the workhorse of neuroscience, allowing scientists to record with millisecond precision the action potentials generated by neurons in vivo. Recently, calcium imaging of fluorescent indicators has emerged as a powerful alternative. This technique has its own strengths and weaknesses and unique data processing problems and interpretation confounds. Here we review the computational methods that convert raw calcium movies to estimates of single neuron spike times with minimal human supervision. By computationally addressing the weaknesses of calcium imaging, these methods hold the promise of significantly improving data quality. We also introduce a new metric to evaluate the output of these processing pipelines, which is based on the cluster isolation distance routinely used in electrophysiology.

    View Publication Page
    02/20/25 | Deep-tissue transcriptomics and subcellular imaging at high spatial resolution
    Gandin V, Kim J, Yang L, Lian Y, Kawase T, Hu A, Rokicki K, Fleishman G, Tillberg P, Aguilera Castrejon A, Stringer C, Preibisch S, Liu ZJ
    Science. 2025 Feb 20:. doi: 10.1126/science.adq2084

    Limited color channels in fluorescence microscopy have long constrained spatial analysis in biological specimens. Here, we introduce cycle Hybridization Chain Reaction (HCR), a method that integrates multicycle DNA barcoding with HCR to overcome this limitation. cycleHCR enables highly multiplexed imaging of RNA and proteins using a unified barcode system. Whole-embryo transcriptomics imaging achieved precise three-dimensional gene expression and cell fate mapping across a specimen depth of ~310 μm. When combined with expansion microscopy, cycleHCR revealed an intricate network of 10 subcellular structures in mouse embryonic fibroblasts. In mouse hippocampal slices, multiplex RNA and protein imaging uncovered complex gene expression gradients and cell-type-specific nuclear structural variations. cycleHCR provides a quantitative framework for elucidating spatial regulation in deep tissue contexts for research and potentially diagnostic applications.

     

    bioRxiv preprint: 10.1101/2024.05.17.594641

    View Publication Page