Main Menu (Mobile)- Block

Main Menu - Block

custom | custom

Search Results

filters_region_cap | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-61yz1V0li8B1bixrCWxdAe2aYiEXdhd0 | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
general_search_page-panel_pane_1 | views_panes

5 Janelia Publications

Showing 1-5 of 5 results
Your Criteria:
    08/12/24 | Cell-surface Milieu Remodeling in Human Dendritic Cell Activation.
    Udeshi ND, Xu C, Jiang Z, Gao SM, Yin Q, Luo W, Carr SA, Davis MM, Li J
    J Immunol. 2024 Aug 12:. doi: 10.4049/jimmunol.2400089

    Dendritic cells (DCs) are specialized sentinel and APCs coordinating innate and adaptive immunity. Through proteins on their cell surface, DCs sense changes in the environment, internalize pathogens, present processed Ags, and communicate with other immune cells. By combining chemical labeling and quantitative mass spectrometry, we systematically profiled and compared the cell-surface proteomes of human primary conventional DCs (cDCs) in their resting and activated states. TLR activation by a lipopeptide globally reshaped the cell-surface proteome of cDCs, with >100 proteins upregulated or downregulated. By simultaneously elevating positive regulators and reducing inhibitory signals across multiple protein families, the remodeling creates a cell-surface milieu promoting immune responses. Still, cDCs maintain the stimulatory-to-inhibitory balance by leveraging a distinct set of inhibitory molecules. This analysis thus uncovers the molecular complexity and plasticity of the cDC cell surface and provides a roadmap for understanding cDC activation and signaling.

    View Publication Page
    09/28/25 | In-situ glial cell-surface proteomics identifies pro-longevity factors in Drosophila
    Marques MP, Sun B, Park Y, Jackson T, Lu T, Qi Y, Harrison E, Wang MC, Venkatachalam K, Pasha OM, Varanasi A, Carey DK, Mani D, Zirin J, Qadiri M, Hu Y, Perrimon N, Carr SA, Udeshi ND, Luo L, Li J, Li H
    bioRxiv. 2025 Sep 28:. doi: 10.1101/2025.09.26.678810

    Much focus has shifted towards understanding how glial dysfunction contributes to age-related neurodegeneration due to the critical roles glial cells play in maintaining healthy brain function. Cell-cell interactions, which are largely mediated by cell-surface proteins, control many critical aspects of development and physiology; as such, dysregulation of glial cell-surface proteins in particular is hypothesized to play an important role in age-related neurodegeneration. However, it remains technically difficult to profile glial cell-surface proteins in intact brains. Here, we applied a cell-surface proteomic profiling method to glial cells from intact brains in Drosophila, which enabled us to fully profile cell-surface proteomes in-situ, preserving native cell-cell interactions that would otherwise be omitted using traditional proteomics methods. Applying this platform to young and old flies, we investigated how glial cell-surface proteomes change during aging. We identified candidate genes predicted to be involved in brain aging, including several associated with neural development and synapse wiring molecules not previously thought to be particularly active in glia. Through a functional genetic screen, we identified one surface protein, DIP-β, which is down-regulated in old flies and can increase fly lifespan when overexpressed in adult glial cells. We further performed whole-head single-nucleus RNA-seq, and revealed that DIP-β overexpression mainly impacts glial and fat cells. We also found that glial DIP-β overexpression was associated with improved cell-cell communication, which may contribute to the observed lifespan extension. Our study is the first to apply in-situ cell-surface proteomics to glial cells in Drosophila, and to identify DIP-β as a potential glial regulator of brain aging.Competing Interest StatementThe authors have declared no competing interest.The original mass spectra and the protein sequence databases used for searches have been deposited in the public proteomics repository MassIVE (http://massive.ucsd.edu) (username: MSV000099083; password: glial). These datasets will be made public upon acceptance of the manuscript. Original proteomic data prior to analyses is provided in the Supplementary Table 1. snRNA-seq data has been deposited to NCBI Gene Expression Omnibus (GSE308135).

    View Publication Page
    07/11/24 | Molecular and cellular mechanisms of teneurin signaling in synaptic partner matching.
    Xu C, Li Z, Lyu C, Hu Y, McLaughlin CN, Wong KK, Xie Q, Luginbuhl DJ, Li H, Udeshi ND, Svinkina T, Mani DR, Han S, Li T, Li Y, Guajardo R, Ting AY, Carr SA, Li J, Luo L
    Cell. 2024 Jul 03:. doi: 10.1016/j.cell.2024.06.022

    In developing brains, axons exhibit remarkable precision in selecting synaptic partners among many non-partner cells. Evolutionarily conserved teneurins are transmembrane proteins that instruct synaptic partner matching. However, how intracellular signaling pathways execute teneurins' functions is unclear. Here, we use in situ proximity labeling to obtain the intracellular interactome of a teneurin (Ten-m) in the Drosophila brain. Genetic interaction studies using quantitative partner matching assays in both olfactory receptor neurons (ORNs) and projection neurons (PNs) reveal a common pathway: Ten-m binds to and negatively regulates a RhoGAP, thus activating the Rac1 small GTPases to promote synaptic partner matching. Developmental analyses with single-axon resolution identify the cellular mechanism of synaptic partner matching: Ten-m signaling promotes local F-actin levels and stabilizes ORN axon branches that contact partner PN dendrites. Combining spatial proteomics and high-resolution phenotypic analyses, this study advanced our understanding of both cellular and molecular mechanisms of synaptic partner matching.

    View Publication Page
    04/29/25 | Molecular organization of central cholinergic synapses.
    Rosenthal JS, Zhang D, Yin J, Long C, Yang G, Li Y, Lu Z, Li W, Yu Z, Li J, Yuan Q
    Proc Natl Acad Sci U S A. 2025 Apr 29;122(17):e2422173122. doi: 10.1073/pnas.2422173122

    Synapses have undergone significant diversification and adaptation, contributing to the complexity of the central nervous system. Understanding their molecular architecture is essential for deciphering the brain's functional evolution. While nicotinic acetylcholine receptors (nAchRs) are widely distributed across metazoan brains, their associated protein networks remain poorly characterized. Using in vivo proximity labeling, we generated proteomic maps of subunit-specific nAchR interactomes in developing and mature brains. Our findings reveal a developmental expansion and reconfiguration of the nAchR interactome. Proteome profiling with genetic perturbations showed that removing individual nAchR subunits consistently triggers compensatory shifts in receptor subtypes, highlighting mechanisms of synaptic plasticity. We also identified the Rho-GTPase regulator Still life (Sif) as a key organizer of cholinergic synapses, with loss of Sif disrupting their molecular composition and structural integrity. These results provide molecular insights into the development and plasticity of central cholinergic synapses, advancing our understanding of synaptic identity conservation and divergence.

    View Publication Page
    08/06/25 | PEELing: an integrated and user-centric platform for cell-surface proteomics analysis
    Xi Peng , Jody Clements , Zuzhi Jiang , Stephan Preibisch , Jiefu Li
    Bioinformatics. 2025 Aug 6:. doi: 10.1093/bioinformatics/btaf439

    Summary: Molecular compartmentalization is vital for cellular physiology. Spatially-resolved proteomics allows biologists to survey protein composition and dynamics with subcellular resolution. Here we present PEELing, an integrated package and user-friendly web service for analyzing spatially-resolved proteomics data. PEELing assesses data quality using curated or user-defined references, performs cutoff analysis to remove contaminants, connects to databases for functional annotation, and generates data visualizations-providing a streamlined and reproducible workflow to explore spatially-resolved proteomics data.

    Availability and implementation: PEELing and its tutorial are publicly available at https://peeling.janelia.org/ (Zenodo DOI: 10.5281/zenodo.15692517). A Python package of PEELing is available at https://github.com/JaneliaSciComp/peeling/ (Zenodo DOI: 10.5281/zenodo.15692434).

    Contact: Technical support for PEELing: [email protected].

    bioRxiv Preprint: https://doi.org/10.1101/2023.04.21.537871

    View Publication Page