Main Menu (Mobile)- Block

Main Menu - Block

custom | custom

Search Results

filters_region_cap | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block
facetapi-61yz1V0li8B1bixrCWxdAe2aYiEXdhd0 | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
general_search_page-panel_pane_1 | views_panes

17 Janelia Publications

Showing 1-10 of 17 results
Your Criteria:
    05/30/24 | Aging atlas reveals cell-type-specific effects of pro-longevity strategies.
    Gao SM, Qi Y, Zhang Q, Guan Y, Lee Y, Ding L, Wang L, Mohammed AS, Li H, Fu Y, Wang MC
    Nat Aging. 2024 May 30:. doi: 10.1038/s43587-024-00631-1

    Organismal aging involves functional declines in both somatic and reproductive tissues. Multiple strategies have been discovered to extend lifespan across species. However, how age-related molecular changes differ among various tissues and how those lifespan-extending strategies slow tissue aging in distinct manners remain unclear. Here we generated the transcriptomic Cell Atlas of Worm Aging (CAWA, http://mengwanglab.org/atlas ) of wild-type and long-lived strains. We discovered cell-specific, age-related molecular and functional signatures across all somatic and germ cell types. We developed transcriptomic aging clocks for different tissues and quantitatively determined how three different pro-longevity strategies slow tissue aging distinctively. Furthermore, through genome-wide profiling of alternative polyadenylation (APA) events in different tissues, we discovered cell-type-specific APA changes during aging and revealed how these changes are differentially affected by the pro-longevity strategies. Together, this study offers fundamental molecular insights into both somatic and reproductive aging and provides a valuable resource for in-depth understanding of the diversity of pro-longevity mechanisms.

    View Publication Page
    05/15/24 | Bacteria-organelle communication in physiology and disease
    Lee Y, Senturk M, Guan Y, Wang MC
    J Cell Biol. 2024 May 15;223(7):. doi: 10.1083/jcb.202310134

    Bacteria, omnipresent in our environment and coexisting within our body, exert dual beneficial and pathogenic influences. These microorganisms engage in intricate interactions with the human body, impacting both human health and disease. Simultaneously, certain organelles within our cells share an evolutionary relationship with bacteria, particularly mitochondria, best known for their energy production role and their dynamic interaction with each other and other organelles. In recent years, communication between bacteria and mitochondria has emerged as a new mechanism for regulating the host's physiology and pathology. In this review, we delve into the dynamic communications between bacteria and host mitochondria, shedding light on their collaborative regulation of host immune response, metabolism, aging, and longevity. Additionally, we discuss bacterial interactions with other organelles, including chloroplasts, lysosomes, and the endoplasmic reticulum (ER).

    View Publication Page
    07/23/24 | Chemical Induction of Longevity-Promoting Colanic Acid in the Host’s Microbiota
    Hu G, Cooke MB, Wen AX, Yu X, Wang J, Herman C, Wang MC
    bioRxiv. 2024 Jul 23:. doi: 10.1101/2024.07.23.604802

    Microbiota-derived metabolites have emerged as key regulators of longevity. The metabolic activity of the gut microbiota, influenced by dietary components and ingested chemical compounds, profoundly impacts host fitness. While the benefits of dietary prebiotics are well-known, chemically targeting the gut microbiota to enhance host fitness remains largely unexplored. Here, we report a novel chemical approach to induce a pro-longevity bacterial metabolite in the host gut. We discovered that specific Escherichia coli strains overproduce colanic acids (CAs) when exposed to a low dose of cephaloridine, leading to an increased lifespan in host Caenorhabditis elegans. In the mouse gut, oral administration of low-dose cephaloridine induces the transcription of the capsular biosynthesis operon responsible for CA biosynthesis in commensal E. coli, which overcomes the inhibition of CA biosynthesis above 30 degrees C and enables its induction directly from the microbiota. Importantly, low-dose cephaloridine induces CA independently of its antibiotic properties through a previously unknown mechanism mediated by the membrane-bound histidine kinase ZraS. Our work lays the foundation for microbiota-based therapeutics through the chemical modulation of bacterial metabolism and reveals the promising potential of bacteria-targeting drugs in promoting host longevity.

    View Publication Page
    09/16/24 | Cross-Tissue Coordination between SLC Nucleoside Transporters Regulates Reproduction in Caenorhabditis elegans
    Guan Y, Yu Y, Gao SM, Ding L, Zhao Q, Wang M
    bioRxiv. 2024 Sep 16:. doi: 10.1101/2024.09.12.612591

    Metabolism is fundamental to organism physiology and pathology. From the intricate network of metabolic reactions, diverse chemical molecules, collectively termed as metabolites, are produced. In multicellular organisms, metabolite communication between different tissues is vital for maintaining homeostasis and adaptation. However, the molecular mechanisms mediating these metabolite communications remain poorly understood. Here, we focus on nucleosides and nucleotides, essential metabolites involved in multiple cellular processes, and report the pivotal role of the SLC29A family of transporters in mediating nucleoside coordination between the soma and the germline. Through genetic analysis, we discovered that two Caenorhabditis elegans homologs of SLC29A transporters, Equilibrative Nucleoside Transporter ENT-1 and ENT-2, act in the germline and the intestine, respectively, to regulate reproduction. Their knockdown synergistically results in sterility. Further single-cell transcriptomic and targeted metabolomic profiling revealed that the ENT double knockdown specifically affects genes in the purine biosynthesis pathway and reduces the ratio of guanosine to adenosine levels. Importantly, guanosine supplementation into the body cavity/pseudocoelom through microinjection rescued the sterility caused by the ENT double knockdown, whereas adenosine microinjection had no effect. Together, these studies support guanosine as a rate limiting factor in the control of reproduction, uncover the previously unknown nucleoside/nucleotide communication between the soma and the germline essential for reproductive success, and highlight the significance of SLC-mediated cell-nonautonomous metabolite coordination in regulating organism physiology.

    View Publication Page
    01/02/24 | Cutting through stress.
    Jasper LA, Wang MC
    Nature Metabolism. 2024 Jan 02:. doi: 10.1038/s42255-023-00946-0
    12/16/24 | Development of a First-in-Class RIPK1 Degrader to Enhance Antitumor Immunity
    Xin Yu , Dong Lu , Xiaoli Qi , Hanfeng Lin , Bryan L. Holloman , Feng Jin , Longyong Xu , Lang Ding , Weiyi Peng , Meng C. Wang , Xi Chen , Jin Wang
    Nat Commun. 2024 Dec 16;15(1):10683. doi: 10.1038/s41467-024-55006-2

    The scaffolding function of receptor interacting protein kinase 1 (RIPK1) confers intrinsic and extrinsic resistance to immune checkpoint blockades (ICBs) and emerges as a promising target for improving cancer immunotherapies. To address the challenge posed by a poorly defined binding pocket within the intermediate domain of RIPK1, here we harness proteolysis targeting chimera (PROTAC) technology to develop a RIPK1 degrader, LD4172. LD4172 exhibits potent and selective RIPK1 degradation both in vitro and in vivo. Degradation of RIPK1 by LD4172 triggers immunogenic cell death, enhances tumor-infiltrating lymphocyte responses, and sensitizes tumors to anti-PD1 therapy in female C57BL/6J mice. This work reports a RIPK1 degrader that serves as a chemical probe for investigating the scaffolding functions of RIPK1 and as a potential therapeutic agent to enhance tumor responses to ICBs therapy.

    View Publication Page
    10/18/24 | FITM2 deficiency results in ER lipid accumulation, ER stress, and reduced apolipoprotein B lipidation and VLDL triglyceride secretion in vitro and in mouse liver.
    Wang H, Nikain C, Fortounas KI, Amengual J, Tufanli O, La Forest M, Yu Y, Wang MC, Watts R, Lehner R, Qiu Y, Cai M, Kurland IJ, Goldberg IJ, Rajan S, Hussain MM, Brodsky JL, Fisher EA
    Mol Metab. 2024 Oct 18:102048. doi: 10.1016/j.molmet.2024.102048

    OBJECTIVES: Triglycerides (TGs) associate with apolipoprotein B100 (apoB100) to form very low density lipoproteins (VLDLs) in the liver. The repertoire of factors that facilitate this association is incompletely understood. FITM2, an integral endoplasmic reticulum (ER) protein, was originally discovered as a factor participating in cytosolic lipid droplet (LD) biogenesis in tissues that do not form VLDL. We hypothesized that in the liver, in addition to promoting cytosolic LD formation, FITM2 would also transfer TG from its site of synthesis in the ER membrane to nascent VLDL particles within the ER lumen.

    METHODS: Experiments were conducted using a rat hepatic cell line (McArdle-RH7777, or McA cells), an established model of mammalian lipoprotein metabolism, and mice. FITM2 expression was reduced using siRNA in cells and by liver specific cre-recombinase mediated deletion of the Fitm2 gene in mice. Effects of FITM2 deficiency on VLDL assembly and secretion in vitro and in vivo were measured by multiple methods, including density gradient ultracentrifugation, chromatography, mass spectrometry, stimulated Raman scattering (SRS) microscopy, sub-cellular fractionation, immunoprecipitation, immunofluorescence, and electron microscopy.

    MAIN FINDINGS: 1) FITM2-deficient hepatic cells in vitro and in vivo secrete TG-depleted VLDL particles, but the number of particles is unchanged compared to controls; 2) FITM2 deficiency in mice on a high fat diet (HFD) results in decreased plasma TG levels. The number of apoB100-containing lipoproteins remains similar, but shift from VLDL to low density lipoprotein (LDL) density; 3) Both in vitro and in vivo, when TG synthesis is stimulated and FITM2 is deficient, TG accumulates in the ER, and despite its availability this pool is unable to fully lipidate apoB100 particles; 4) FITM2 deficiency disrupts ER morphology and results in ER stress.

    PRINCIPAL CONCLUSIONS: The results suggest that FITM2 contributes to VLDL lipidation, especially when newly synthesized hepatic TG is in abundance. In addition to its fundamental importance in VLDL assembly, the results also suggest that under dysmetabolic conditions, FITM2 may be an important factor in the partitioning of TG between cytosolic LDs and VLDL particles.

    View Publication Page
    10/14/24 | IRE1α silences dsRNA to prevent taxane-induced pyroptosis in triple-negative breast cancer.
    Xu L, Peng F, Luo Q, Ding Y, Yuan F, Zheng L, He W, Zhang SS, Fu X, Liu J, Mutlu AS, Wang S, Nehring RB, Li X, Tang Q, Li C, Lv X, Dobrolecki LE, Zhang W, Han D, Zhao N, Jaehnig E, Wang J, Wu W, Graham DA, Li Y, Chen R, Peng W, Chen Y, Catic A, Zhang Z, Zhang B, Mustoe AM, Koong AC, Miles G, Lewis MT, Wang MC, Rosenberg SM, O'Malley BW, Westbrook TF, Xu H, Zhang XH, Osborne CK, Li JB, Ellis MJ, Rimawi MF, Rosen JM, Chen X
    Cell. 2024 Oct 14:. doi: 10.1016/j.cell.2024.09.032

    Chemotherapy is often combined with immune checkpoint inhibitor (ICIs) to enhance immunotherapy responses. Despite the approval of chemo-immunotherapy in multiple human cancers, many immunologically cold tumors remain unresponsive. The mechanisms determining the immunogenicity of chemotherapy are elusive. Here, we identify the ER stress sensor IRE1α as a critical checkpoint that restricts the immunostimulatory effects of taxane chemotherapy and prevents the innate immune recognition of immunologically cold triple-negative breast cancer (TNBC). IRE1α RNase silences taxane-induced double-stranded RNA (dsRNA) through regulated IRE1-dependent decay (RIDD) to prevent NLRP3 inflammasome-dependent pyroptosis. Inhibition of IRE1α in Trp53 TNBC allows taxane to induce extensive dsRNAs that are sensed by ZBP1, which in turn activates NLRP3-GSDMD-mediated pyroptosis. Consequently, IRE1α RNase inhibitor plus taxane converts PD-L1-negative, ICI-unresponsive TNBC tumors into PD-L1 immunogenic tumors that are hyper-sensitive to ICI. We reveal IRE1α as a cancer cell defense mechanism that prevents taxane-induced danger signal accumulation and pyroptotic cell death.

    View Publication Page
    09/07/23 | Mitochondrial GTP metabolism controls reproductive aging in C. elegans.
    Lee Y, Savini M, Chen T, Yang J, Zhao Q, Ding L, Gao SM, Senturk M, Sowa JN, Wang JD, Wang MC
    Developmental Cell. 2023 Sep 07:. doi: 10.1016/j.devcel.2023.08.019

    Healthy mitochondria are critical for reproduction. During aging, both reproductive fitness and mitochondrial homeostasis decline. Mitochondrial metabolism and dynamics are key factors in supporting mitochondrial homeostasis. However, how they are coupled to control reproductive health remains unclear. We report that mitochondrial GTP (mtGTP) metabolism acts through mitochondrial dynamics factors to regulate reproductive aging. We discovered that germline-only inactivation of GTP- but not ATP-specific succinyl-CoA synthetase (SCS) promotes reproductive longevity in Caenorhabditis elegans. We further identified an age-associated increase in mitochondrial clustering surrounding oocyte nuclei, which is attenuated by GTP-specific SCS inactivation. Germline-only induction of mitochondrial fission factors sufficiently promotes mitochondrial dispersion and reproductive longevity. Moreover, we discovered that bacterial inputs affect mtGTP levels and dynamics factors to modulate reproductive aging. These results demonstrate the significance of mtGTP metabolism in regulating oocyte mitochondrial homeostasis and reproductive longevity and identify mitochondrial fission induction as an effective strategy to improve reproductive health.

    View Publication Page
    12/04/23 | Mitochondrial GTP metabolism controls reproductive aging in C. elegans.
    Lee Y, Savini M, Chen T, Yang J, Zhao Q, Ding L, Gao SM, Senturk M, Sowa JN, Wang JD, Wang MC
    Developmental Cell. 2023 Dec 04;58(23):2718-2731.e7. doi: 10.1016/j.devcel.2023.08.019

    Healthy mitochondria are critical for reproduction. During aging, both reproductive fitness and mitochondrial homeostasis decline. Mitochondrial metabolism and dynamics are key factors in supporting mitochondrial homeostasis. However, how they are coupled to control reproductive health remains unclear. We report that mitochondrial GTP (mtGTP) metabolism acts through mitochondrial dynamics factors to regulate reproductive aging. We discovered that germline-only inactivation of GTP- but not ATP-specific succinyl-CoA synthetase (SCS) promotes reproductive longevity in Caenorhabditis elegans. We further identified an age-associated increase in mitochondrial clustering surrounding oocyte nuclei, which is attenuated by GTP-specific SCS inactivation. Germline-only induction of mitochondrial fission factors sufficiently promotes mitochondrial dispersion and reproductive longevity. Moreover, we discovered that bacterial inputs affect mtGTP levels and dynamics factors to modulate reproductive aging. These results demonstrate the significance of mtGTP metabolism in regulating oocyte mitochondrial homeostasis and reproductive longevity and identify mitochondrial fission induction as an effective strategy to improve reproductive health.

    View Publication Page